Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2727 results about "Torso" patented technology

The torso or trunk is an anatomical term for the central part or core of many animal bodies (including humans) from which extend the neck and limbs. The torso includes: the thoracic segment of the trunk, the abdominal segment of the trunk, and the perineum.

Health monitoring system

A health monitoring system which tracks the state of health of a patient and compiles a chronological health history of the patient uses a multiparametric monitor which periodically and automatically measures and records a plurality of physiological data from sensors in contact with the patient's body. The data collected is not specifically related to a particular medical condition but, instead, provides the information necessary to derive patterns which are characteristic of healthy patients as well as those who are ill. The data collected is periodically uploaded to a database in which it is stored along with similar health histories for other patients. The monitor is preferably self-contained in a chest strap which is located on the patient's torso, and makes use of a controller which controls sampling of the desired data and storage of the data to a local memory device pending uploading to the database. The more voluminous data collected is reduced and compressed prior to storage in the local memory device. Preferably, much of the monitor circuitry is run intermittently to conserve power. The monitor data is supplemented with subjective data (such as psychological and environmental conditions) collected from the patient using a handheld data input device which runs a program to solicit information from the patient. The subjective data collected is chronologically aligned with the monitor data in the database such that the health history of a patient includes both objective and subjective medical data.
Owner:THE BRIGHAM & WOMEN S HOSPITAL INC

Semi-powered lower extremity exoskeleton

The lower extremity exoskeleton comprises two leg supports connectable to person's lower limbs and configured to rest on the ground during their stance phase. Each leg support comprises a thigh link and a shank link; a knee joint configured to allow flexion and extension between the shank link and the thigh link. The lower extremity exoskeleton further comprises an exoskeleton trunk connectable to the person'supper body. The exoskeleton trunk is connectable to the thigh links of the leg supports allowing for the flexion and extension between the leg supports and the exoskeleton trunk. Two torque generators are coupled to each of the knee joints. A power unit, capable of providing power, is coupled to the torque generators. In operation when a leg support is in a stance phase and climbing a slope or stairs, the power unit injects power into the respective torque generator thereby extending the respective knee angle. When a leg support is in stance phase and not climbing a slope or stairs, the power unit does not inject any power to the respective torque generator, but without dissipating any stored power in said power unit, it forces the torque generator to resist flexion of the respective knee joint. When a leg support is in a swing phase, the power unit does not inject any power to the respective torque generator, but without dissipating any stored power in said power unit, it forces the torque generator to minimize its resistance to knee flexion and extension.
Owner:RGT UNIV OF CALIFORNIA

Goniometer-based body-tracking device and method

A sensing system is provided for measuring various joints of a human body for applications for performance animation, biomechanical studies and general motion capture. One sensing device of the system is a linkage-based sensing structure comprising rigid links interconnected by revolute joints, where each joint angle is measured by a resistive bend sensor or other convenient goniometer. Such a linkage-based sensing structure is typically used for measuring joints of the body, such as the shoulders, hips, neck, back and forearm, which have more than a single rotary degree of freedom of movement. In one embodiment of the linkage-based sensing structure, a single long resistive bend sensor measures the angle of more that one revolute joint. The terminal ends of the linkage-based sensing structure are secured to the body such that movement of the joint is measured by the device. A second sensing device of the sensing system comprises a flat, flexible resistive bend sensor guided by a channel on an elastic garment. Such a flat sensing device is typically used to measure various other joints of the body which have primarily one degree of freedom of movement, such as the elbows, knees and ankles. Combining the two sensing devices as described, the sensing system has low sensor bulk at body extremities, yet accurately measures the multi-degree-of-freedom joints nearer the torso. Such a system can operate totally untethered, in real time, and without concern for electromagnetic interference or sensor occlusion.
Owner:IMMERSION CORPORATION

Health monitoring system

A health monitoring system which tracks the state of health of a patient and compiles a chronological health history of the patient uses a multiparametric monitor which periodically and automatically measures and records a plurality of physiological data from sensors in contact with the patient's body. The data collected is not specifically related to a particular medical condition but, instead, provides the information necessary to derive patterns which are characteristic of healthy patients as well as those who are ill. The data collected is periodically uploaded to a database in which it is stored along with similar health histories for other patients. The monitor is preferably self-contained in a chest strap which is located on the patient's torso, and makes use of a controller which controls sampling of the desired data and storage of the data to a local memory device pending uploading to the database. The more voluminous data collected is reduced and compressed prior to storage in the local memory device. Preferably, much of the monitor circuitry is run intermittently to conserve power. The monitor data is supplemented with subjective data (such as psychological and environmental conditions) collected from the patient using a handheld data input device which runs a program to solicit information from the patient. The subjective data collected is chronologically aligned with the monitor data in the database such that the health history of a patient includes both objective and subjective medical data.
Owner:THE BRIGHAM & WOMEN S HOSPITAL INC

Semi-powered lower extremity exoskeleton

The lower extremity exoskeleton comprises two leg supports connectable to person's lower limbs and configured to rest on the ground during their stance phase. Each leg support comprises a thigh link and a shank link; a knee joint configured to allow flexion and extension between the shank link and the thigh link. The lower extremity exoskeleton further comprises an exoskeleton trunk connectable to the person'supper body. The exoskeleton trunk is connectable to the thigh links of the leg supports allowing for the flexion and extension between the leg supports and the exoskeleton trunk. Two torque generators are coupled to each of the knee joints. A power unit, capable of providing power, is coupled to the torque generators. In operation when a leg support is in a stance phase and climbing a slope or stairs, the power unit injects power into the respective torque generator thereby extending the respective knee angle. When a leg support is in stance phase and not climbing a slope or stairs, the power unit does not inject any power to the respective torque generator, but without dissipating any stored power in said power unit, it forces the torque generator to resist flexion of the respective knee joint. When a leg support is in a swing phase, the power unit does not inject any power to the respective torque generator, but without dissipating any stored power in said power unit, it forces the torque generator to minimize its resistance to knee flexion and extension.
Owner:RGT UNIV OF CALIFORNIA
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products