Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

20784results about "Gripping heads" patented technology

Robotic manipulation methods and systems for executing a domain-specific application in an instrumented environment with electronic minimanipulation libraries

Embodiments of the present disclosure are directed to the technical features relating to the ability of being able to create complex robotic humanoid movements, actions, and interactions with tools and the instrumented environment by automatically building movements for the humanoid; actions and behaviors of the humanoid based on a set of computer-encoded robotic movement and action primitives. The primitives are defined by motions / actions of articulated degrees of freedom that range in complexity from simple to complex, and which can be combined in any form in serial / parallel fashion. These motion-primitives are termed to be minimanipulations and each has a clear time-indexed command input-structure and output behavior / performance profile that is intended to achieve a certain function. Minimanipulations comprise a new way of creating a general programmable-by-example platform for humanoid robots. One or more minimanipulation electronic libraries provide a large suite of higher-level sensing-and-execution sequences that are common building blocks for complex tasks, such as cooking, taking care of the infirm, or other tasks performed by the next generation of humanoid robots.

Method and apparatus for performing minimally invasive surgical procedures

A system for performing minimally invasive cardiac procedures. The system includes a pair of surgical instruments that are coupled to a pair of robotic arms. The instruments have end effectors that can be manipulated to hold and suture tissue. The robotic arms are coupled to a pair of master handles by a controller. The handles can be moved by the surgeon to produce a corresponding movement of the end effectors. The movement of the handles is scaled so that the end effectors have a corresponding movement that is different, typically smaller, than the movement performed by the hands of the surgeon. The scale factor is adjustable so that the surgeon can control the resolution of the end effector movement. The movement of the end effector can be controlled by an input button, so that the end effector only moves when the button is depressed by the surgeon. The input button allows the surgeon to adjust the position of the handles without moving the end effector, so that the handles can be moved to a more comfortable position. The system may also have a robotically controlled endoscope which allows the surgeon to remotely view the surgical site. A cardiac procedure can be performed by making small incisions in the patient's skin and inserting the instruments and endoscope into the patient. The surgeon manipulates the handles and moves the end effectors to perform a cardiac procedure such as a coronary artery bypass graft.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products