Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

4502 results about "Human being" patented technology

Optical-based sensing devices

An optical-based sensor for detecting the presence or amount of an analyte using both indicator and reference channels. The sensor has a sensor body with a source of radiation embedded therein. Radiation emitted by the source interacts with indicator membrane indicator molecules proximate the surface of the body. At least one optical characteristic of these indicator molecules varies with analyte concentration. For example, the level of fluorescence of fluorescent indicator molecules or the amount of light absorbed by light-absorbing indicator molecules can vary as a function of analyte concentration. In addition, radiation emitted by the source also interacts with reference membrane indicator molecules proximate the surface of the body. Radiation (e.g., light) emitted or reflected by these indicator molecules enters and is internally reflected in the sensor body. Photosensitive elements within the sensor body generate both indicator channel and reference channel signals to provide an accurate indication of the concentration of the analyte. Preferred embodiments are totally self-contained and are sized and shaped for use in vivo in a human being. Such embodiments preferably include a power source, e.g. an inductor, which powers the source of radiation using external means, as well as a transmitter, e.g. an inductor, to transmit to external pickup means the signal representing the level of analyte.
Owner:SENSEONICS INC

Noninvasive measurement system

The noninvasive measurement system provides a technique for manipulating wave data. In particular, wave data reflected from a biological entity is received, and the reflected wave data is correlated to a substance in the biological entity. The wave data may comprise light waves, and the biological entity may comprise a human being or blood. Additionally, a substance may comprise, for example, a molecule or ionic substance. The molecule may be, for example, a glucose molecule.
Furthermore, the wave data is used to form a matrix of pixels with the received wave data. The matrix of pixels may be modified by techniques of masking, stretching, or removing hot spots.
Then, the pixels may be integrated to obtain an integration value that is correlated to a glucose level. The correlation process may use a lookup table, which may be calibrated to a particular biological entity. Moreover, an amplitude and phase angle may be calculated for the reflected wave data and used to identify a glucose level in the biological entity.
The glucose level may be displayed on a monitor attached to the computer. The computer may be a portable, self-contained unit that comprises a data processing system and a wave reflection capture system. On the other hand, the computer may be attached to a network of other computers, wherein the reflected wave data is received by the computer and forwarded to another computer in the network for processing.
Owner:STI MEDICAL SYST

Computer-simulated virtual reality environments for evaluation of neurobehavioral performance

InactiveUS20050216243A1Increase and decrease difficultyStrong specificityMedical simulationTelemedicineTest performanceNervous system
A virtual reality (VR)-based test battery wherein various neurobehavioral performance skills, including motor skills, sensory-perceptual skills, attention, and decision-making can be measured in human subjects. The invention can be used as a screening method within a virtual environment to provide an overall measure of general brain function relating to behavioral ability. In addition, the invention provides comprehensive VR-based neurobehavioral examinations tailored to individual subjects which can automatically self-adjust during operation in accordance with the specific purpose of the assessment, or for forms of cognitive or physical rehabilitation. According to the invention, patients with neurological and psychiatric dysfunctions can be assessed with physiologic monitoring as well as with anatomical and functional neuroimaging to non-invasively map the functional neuroanatomic correlates of VR-based test performance. In a preferred embodiment, the VR-based neurobehavioral testing system is portable allowing computerized tests to be administered in a desk-top or lap-top configuration, or via the Internet for tele-assessment of human subjects who are physically inaccessible to the test administrator. In a particularly preferred embodiment, the method of the invention is used for vocational assessment and training, wherein individual test scores are combined into a final metric useful for assessing a candidate's qualifications for employment, or certification in a particular skill.
Owner:GRAHAM SIMON +3

Optical-based sensing devices

An optical-based sensor for detecting the presence or amount of an analyte using both indicator and reference channels. The sensor has a sensor body with a source of radiation embedded therein. Radiation emitted by the source interacts with indicator membrane indicator molecules proximate the surface of the body. At least one optical characteristic of these indicator molecules varies with analyte concentration. For example, the level of fluorescence of fluorescent indicator molecules or the amount of light absorbed by light-absorbing indicator molecules can vary as a function of analyte concentration. In addition, radiation emitted by the source also interacts with reference membrane indicator molecules proximate the surface of the body. Radiation (e.g., light) emitted or reflected by these indicator molecules enters and is internally reflected in the sensor body. Photosensitive elements within the sensor body generate both indicator channel and reference channel signals to provide an accurate indication of the concentration of the analyte. Preferred embodiments are totally self-contained and are sized and shaped for use in vivo in a human being. Such embodiments preferably include a power source, e.g. an inductor, which powers the source of radiation using external means, as well as a transmitter, e.g. an inductor, to transmit to external pickup means the signal representing the level of analyte.
Owner:SENSEONICS INC

Physiological monitoring system for a computational device of a human subject

A system for monitoring at least one physiological parameter of a human subject. The system of the present invention features a device with which the human subject regularly interacts, and which is connected to the computational device of the human subject for automatic collection of at least one physiological parameter which is also of medical interest. The device features at least one physiological sensor for collecting the measurement of the physiological parameter. The computational device of the human subject then preferably operates a software program to analyze the data which is collected, in order for the human subject to receive an alert when necessary. Alternatively or additionally, the collected data is sent to a remote computational device which is in communication with the computational device of the human subject for analysis. Optionally, the present invention enables the human subject to receive an alert if a deterioration in the physiological condition of the human subject is detected, thereby enabling the human subject to start preventive medical treatment with trained medical personnel as soon as possible. Thus, the awareness of the human subject about any incipient medical problem is immediately improved, which may result in an increased probability of being able to successfully treat and / or otherwise ameliorate those problems.
Owner:MEDIC4ALL INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products