Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

20203results about "Interprogram communication" patented technology

Conversational computing via conversational virtual machine

A conversational computing system that provides a universal coordinated multi-modal conversational user interface (CUI) (10) across a plurality of conversationally aware applications (11) (i.e., applications that “speak” conversational protocols) and conventional applications (12). The conversationally aware maps, applications (11) communicate with a conversational kernel (14) via conversational application APIs (13). The conversational kernel (14) controls the dialog across applications and devices (local and networked) on the basis of their registered conversational capabilities and requirements and provides a unified conversational user interface and conversational services and behaviors. The conversational computing system may be built on top of a conventional operating system and APIs (15) and conventional device hardware (16). The conversational kernel (14) handles all I/O processing and controls conversational engines (18). The conversational kernel (14) converts voice requests into queries and converts outputs and results into spoken messages using conversational engines (18) and conversational arguments (17). The conversational application API (13) conveys all the information for the conversational kernel (14) to transform queries into application calls and conversely convert output into speech, appropriately sorted before being provided to the user.
Owner:UNILOC 2017 LLC

Using a community of distributed electronic agents to support a highly mobile, ambient computing environment

A highly mobile, ambient computing environment is disclosed for serving a knowledge worker away from the their desk. The present invention allows a knowledge worker to get increased leverage from personal, networked, and interactive computing devices while in their car, airplane seat, or in a conference room with others. An Open Agent Architecture is used to incorporate elements such as GPS agents, speech recognition, and opportunistic connectivity among meeting participants. Communication and cooperation between agents are brokered by one or more facilitators, which are responsible for matching requests, from users and agents, with descriptions of the capabilities of other agents. It is not generally required that a user or agent know the identities, locations, or number of other agents involved in satisfying a request, and relatively minimal effort is involved in incorporating new agents and “wrapping” legacy applications. Extreme flexibility is achieved through an architecture organized around the declaration of capabilities by service-providing agents, the construction of arbitrarily complex goals by users and service-requesting agents, and the role of facilitators in delegating and coordinating the satisfaction of these goals, subject to advice and constraints that may accompany them.
Owner:IPA TECH INC

Method and apparatus for data communication

A data acquisition and delivery system for performing data delivery tasks is disclosed. This system uses a computer running software to acquire source data from a selected data source, to process (e.g. filter, format convert) the data, if desired, and to deliver the resulting delivered data to a data target. The system is designed to access remote and/or local data sources and to deliver data to remote and/or local data targets. The data target might be an application program that delivers the data to a file or the data target may simply be a file, for example. To obtain the delivered data, the software performs processing of the source data as appropriate for the particular type of data being retrieved, for the particular data target and as specified by a user, for example. The system can communicate directly with a target application program, telling the target application to place the delivered data in a particular location in a particular file. The system provides an external interface to an external context. If the external context is a human, the external interface may be a graphical user interface, for example. If the external context is another software application, the external interface may be an OLE interface, for example. Using the external interface, the external context is able to vary a variety of parameters to define data delivery tasks as desired. The system uses a unique notation that includes a plurality of predefined parameters to define the data delivery tasks and to communicate them to the software.
Owner:E BOTZ COM INC A DELAWARE +2

Mechanism and apparatus for returning results of services in a distributed computing environment

Systems and methods for returning results of services within a distributed computing environment are provided. After a client invokes one or more functions of a service, results of the function(s) may be returned to the client in a plurality of ways: for example, in a message, in a space (e.g., a network-addressable storage location), in a space wherein the client is notified via an event, using an advertisement returned in a message, using an advertisement returned in a space, and using an advertisement returned in a space wherein the client is notified via an event. The advertisement may include the information necessary to access and read the results in a storage location such as a space. A schema for the service may specify a plurality of messages which are usable to invoke the function(s) of the service. The messages, results, and advertisements may be expressed in a platform-independent and / or programming-language-independent data representation language such as XML. The availability of these plurality of methods may enhance the flexibility and adaptability of the distributed computing environment for a variety of situations, such as for clients having differing capabilities. For additional flexibility, results may also be efficiently passed to another service.
Owner:ORACLE INT CORP

Method and apparatus for providing plug in media decoders

A method and apparatus for providing plug-in media decoders. Embodiments provide a "plug-in" decoder architecture that allows software decoders to be transparently downloaded, along with media data. User applications are able to support new media types as long as the corresponding plug-in decoder is available with the media data. Persistent storage requirements are decreased because the downloaded decoder is transient, existing in application memory for the duration of execution of the user application. The architecture also supports use of plug-in decoders already installed in the user computer. One embodiment is implemented with object-based class files executed in a virtual machine to form a media application. A media data type is determined from incoming media data, and used to generate a class name for a corresponding codec (coder-decoder) object. A class path vector is searched, including the source location of the incoming media data, to determine the location of the codec class file for the given class name. When the desired codec class file is located, the virtual machine's class loader loads the class file for integration into the media application. If the codec class file is located across the network at the source location of the media data, the class loader downloads the codec class file from the network. Once the class file is loaded into the virtual machine, an instance of the codec class is created within the media application to decode/decompress the media data as appropriate for the media data type.
Owner:ORACLE INT CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products