Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

126 results about "Decoder architecture" patented technology

Method and apparatus for providing plug in media decoders

A method and apparatus for providing plug-in media decoders. Embodiments provide a "plug-in" decoder architecture that allows software decoders to be transparently downloaded, along with media data. User applications are able to support new media types as long as the corresponding plug-in decoder is available with the media data. Persistent storage requirements are decreased because the downloaded decoder is transient, existing in application memory for the duration of execution of the user application. The architecture also supports use of plug-in decoders already installed in the user computer. One embodiment is implemented with object-based class files executed in a virtual machine to form a media application. A media data type is determined from incoming media data, and used to generate a class name for a corresponding codec (coder-decoder) object. A class path vector is searched, including the source location of the incoming media data, to determine the location of the codec class file for the given class name. When the desired codec class file is located, the virtual machine's class loader loads the class file for integration into the media application. If the codec class file is located across the network at the source location of the media data, the class loader downloads the codec class file from the network. Once the class file is loaded into the virtual machine, an instance of the codec class is created within the media application to decode/decompress the media data as appropriate for the media data type.
Owner:ORACLE INT CORP

Method and apparatus for providing plug-in media decoders

A method and apparatus for providing plug-in media decoders. Embodiments provide a "plug-in" decoder architecture that allows software decoders to be transparently downloaded, along with media data. User applications are able to support new media types as long as the corresponding plug-in decoder is available with the media data. Persistent storage requirements are decreased because the downloaded decoder is transient, existing in application memory for the duration of execution of the user application. The architecture also supports use of plug-in decoders already installed in the user computer. One embodiment is implemented with object-based class files executed in a virtual machine to form a media application. A media data type is determined from incoming media data, and used to generate a class name for a corresponding codec (coder-decoder) object. A class path vector is searched, including the source location of the incoming media data, to determine the location of the codec class file for the given class name. When the desired codec class file is located, the virtual machine's class loader loads the class file for integration into the media application. If the codec class file is located across the network at the source location of the media data; the class loader downloads the codec class file from the network. Once the class file is loaded into the virtual machine, an instance of the codec class is created within the media application to decode / decompress the media data as appropriate for the media data type.
Owner:SUN MICROSYSTEMS INC

Method and apparatus for providing plug-in media decoders

A method and apparatus for providing plug-in media decoders. Embodiments provide a "plug-in" decoder architecture that allows software decoders to be transparently downloaded, along with media data. User applications are able to support new media types as long as the corresponding plug-in decoder is available with the media data. Persistent storage requirements are decreased because the downloaded decoder is transient, existing in application memory for the duration of execution of the user application. The architecture also supports use of plug-in decoders already installed in the user computer. One embodiment is implemented with object-based class files executed in a virtual machine to form a media application. A media data type is determined from incoming media data, and used to generate a class name for a corresponding codec (coder-decoder) object. A class path vector is searched, including the source location of the incoming media data, to determine the location of the codec class file for the given class name. When the desired codec class file is located, the virtual machine's class loader loads the class file for integration into the media application. If the codec class file is located across the network at the source location of the media data; the class loader downloads the codec class file from the network. Once the class file is loaded into the virtual machine, an instance of the codec class is created within the media application to decode / decompress the media data as appropriate for the media data type.
Owner:SUN MICROSYSTEMS INC

Double-flow vehicle-mounted pedestrian and vehicle prediction method based on boundary frame and distance prediction

The invention provides a double-flow vehicle-mounted pedestrian and vehicle prediction method based on boundary frame and distance prediction. The method comprises the main contents: pedestrian trajectory prediction, Bayesian modeling, recurrent neural network (RNN) encoder-decoder, distance prediction, and training and reasoning. The process comprises that a distance prediction flow is used for predicting a most possible vehicle distance sequence, and the boundary frame flow is composed of a Bayesian RNN encoder-decoder structure and is used for predicting the attitude distribution on a pedestrian trajectory and capturing cognition and arbitrary uncertainty; since the prediction flow of the distance prediction method is used for estimating a prediction point, the prediction flow is trained by minimizing the mean square error of a training set; and the Bayesian boundary frame prediction flow is trained by estimating and minimizing the KL divergence approximate to weight distribution. The double-flow system structure including the pedestrian boundary frame prediction and the vehicle distance prediction is adopted, the time required for prediction is greatly shortened, and the prediction accuracy of the model is also significantly improved by the uncertainty estimation.
Owner:SHENZHEN WEITESHI TECH

High speed turbo codes decoder for 3g using pipelined siso log-map decoders architecture

A baseband processor is provided having Turbo Codes Decoders with Diversity processing for computing baseband signals from multiple separate antennas. The invention decodes multipath signals that have arrived at the terminal via different routes after being reflected from buildings, trees or hills. The Turbo Codes Decoder with Diversity processing increases the signal to noise ratio (SNR) more than 6 dB which enables the 3rd Generation Wireless system to deliver data rates from up to 2 Mbit/s. The invention provides several improved Turbo Codes Decoder methods and devices that provide a more suitable, practical and simpler method for implementation a Turbo Codes Decoder in ASIC (Application Specific Integrated Circuits) or DSP codes. A plurality of parallel Turbo Codes Decoder blocks is provided to compute baseband signals from multiple different receiver paths. Several pipelined max-Log-MAP decoders are used for iterative decoding of received data. A Sliding Window of Block N data is used for pipeline operations. In a pipeline mode, a first decoder A decodes block N data from a first source, while a second decoder B decodes block N data from a second source during the same clock cycle. Pipelined max-Log-MAP decoders provide high speed data throughput and one output per clock cycle.
Owner:TURBOCODE LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products