Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2355 results about "Discriminator" patented technology

In distributed computing, a discriminator is a typed tag field present in OMG IDL discriminated union type and value definitions that determines which union member is selected in the current union instance. Unlike in some conventional programming languages offering support for unions, discriminator in IDL is not identical to selected field name.

Unsupervised domain-adaptive brain tumor semantic segmentation method based on deep adversarial learning

The invention provides an unsupervised domain-adaptive brain tumor semantic segmentation method based on deep adversarial learning. The method comprises the steps of deep coding-decoding full-convolution network segmentation system model setup, domain discriminator network model setup, segmentation system pre-training and parameter optimization, adversarial training and target domain feature extractor parameter optimization and target domain MRI brain tumor automatic semantic segmentation. According to the method, high-level semantic features and low-level detailed features are utilized to jointly predict pixel tags by the adoption of a deep coding-decoding full-convolution network modeling segmentation system, a domain discriminator network is adopted to guide a segmentation model to learn domain-invariable features and a strong generalization segmentation function through adversarial learning, a data distribution difference between a source domain and a target domain is minimized indirectly, and a learned segmentation system has the same segmentation precision in the target domain as in the source domain. Therefore, the cross-domain generalization performance of the MRI brain tumor full-automatic semantic segmentation method is improved, and unsupervised cross-domain adaptive MRI brain tumor precise segmentation is realized.

Agile network protocol for secure communications with assured system availability

A plurality of computer nodes communicates using seemingly random IP source and destination addresses and (optionally) a seemingly random discriminator field. Data packets matching criteria defined by a moving window of valid addresses are accepted for further processing, while those that do not meet the criteria are rejected. In addition to “hopping” of IP addresses and discriminator fields, hardware addresses such as Media Access Control addresses can be hopped. The hopped addresses are generated by random number generators having non-repeating sequence lengths that are easily determined a-priori, which can quickly jump ahead in sequence by an arbitrary number of random steps and which have the property that future random numbers are difficult to guess without knowing the random number generator's parameters. Synchronization techniques can be used to re-establish synchronization between sending and receiving-nodes. These techniques include a self-synchronization technique in which a sync field is transmitted as part of each packet, and a “checkpoint” scheme by which transmitting and receiving nodes can advance to a known point in their hopping schemes. A fast-packet reject technique based on the use of presence vectors is also described. A distributed transmission path embodiment incorporates randomly selected physical transmission paths.

Method and apparatus for order independent processing of virtual private network protocols

Methods and arrangements for virtual private network (VPN) data packets are disclosed. VPN packets include a payload having Internet Protocol (IP) addresses which guide the packet through a network to a security gateway. The payload may be encrypted and/or compressed and may include internal addresses to denote the real source and destination for a data portion of the payload. As initial control packets are received they are authenticated and rules and procedures are identified for proper treatment of VPN data packets bearing the same source IP address. The rules and procedures are stored in a gateway data engine having a plurality of protocol processing modules. VPN data packets are received by a protocol discriminator which reads the stored rules and procedures identified for the source IP address of the received packet. The discriminator passes the received packet to a first protocol module as identified in the stored rules and procedures. After the first module completes processing, the packet is passed back to the protocol discriminator which determines whether further protocol processing is required. When further protocol processing is required, the packet is passed to another protocol module for processing in accordance with another protocol. At the completion of processing, the second protocol module returns the packet to the protocol discriminator.

Resonant tracking non-contact power supply device and power supply method

The invention discloses a resonant tracking non-contact power supply device and a resonant tracking non-contact power supply method and aims to mainly solve the problems that the transmission efficiency and transmission distance are reduced and induction voltage is sensitive to load change caused by the change of a resonant point in an LC resonant non-contact power supply. An excitation source with adjustable frequency and amplitude is formed through an adjustable switch power source (102) and a half-bridge switch (103) and is applied to a resonant circuit consisting of an emitting coil (112) and a resonant capacitor (113); a current signal in the resonant circuit is acquired by using a current sampler (104); an automatic resonant frequency tracking circuit consists of a comparator (105), a phase discriminator (106) and a controllable oscillator (107); when the resonant point changes, an excitation frequency is automatically adjusted and an automatic excitation voltage adjusting circuit consists of a wave detecting and filtering circuit (109), an error amplifier (110) and the adjustable switch power source (102) to automatically adjust the excitation voltage when a load changes, so a load voltage is basically constant. The resonant tracking non-contact power supply device can overcome the effects caused by resonant frequency change and load change and is applicable for the occasion of close-range and high-efficiency non-contact power transmission.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products