Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1409 results about "Maximum power point tracking" patented technology

Maximum power point tracking (MPPT) or sometimes just power point tracking (PPT)) is a technique used commonly with wind turbines and photovoltaic (PV) solar systems to maximize power extraction under all conditions.

Multi-mode renewable power converter system

A multi-mode renewable power converter system is disclosed. The system includes a control unit, a boost converter, an inverter and optional bi-directional charger, wherein the boost converter converts DC output of a solar cell or a renewable source to high DC bus voltage, and the inverter converts this DC bus voltage to an AC output. This power converter can be used to support standalone load or grid-connected system with a dynamic maximum power point tracking (MPPT) circuit. The MPPT circuit detects the current and voltage from the solar cell and indicates to the inverter to provide power to the load connected. When the optional bi-directional charger is installed, the MPPT signal is also fed to this charger to make the power efficiency maximized for the system.
Owner:PHOENIXTEC POWER

Maximum power point tracking method and device

The output current value of a direct-current power source obtained by low-frequency, minute modulation of the input voltage of a switching converter is detected in a circuit having an amplification factor switching function that switches the amplification factor between definite magnitudes synchronizing with the modulation, and by using a signal obtained by demodulating in a discriminator circuit the output of this circuit synchronizing with the modulation to control the switching converter, the power point of the switching converter can be tracked to the maximum power point by following the change in state of the direct current power source.
Owner:NAT INST OF ADVANCED IND SCI & TECH +1

Method and apparatus for tracking maximum power point for inverters, for example, in photovoltaic applications

A power system employs an outer voltage feedback loop and an inner current feedback loop to control a power converter, such as a DC to AC inverter for transferring electrical power between a power source, for example a photovoltaic array, and a load, for example a power grid. The outer loop accommodates variations in the output of the power source, for example accommodating anomalies in IV characteristics such as IV droop characteristic associated with photovoltaic cells. The outer loop may employ a first control regime or a second control regime, for example, dependent on whether a DC bus voltage or power is smaller than a value corresponding to measurement resolution or expected noise.
Owner:RHOMBUS ENERGY SOLUTIONS

Device For Distributed Maximum Power Tracking For Solar Arrays

The present invention is a system for providing power from solar cells whereby each cell or cell array is allowed to produce its maximum available power and converted by an operatively connected DC / DC converter. Each cell or cell array has its own DC / DC converter. In one form the system for providing power from solar cells includes one or more solar generators wherein each of said solar generators has one to nine solar cells; a maximum power tracker operatively associated with each solar generator, each of said maximum power tracker includes a buck type DC / DC converter without an output inductor, each of said maximum power trackers are operatively connected in series with each other; an inductor operatively connected to the series connected maximum power trackers; and means for providing electrical power from the inductor to load means, wherein each of said maximum power trackers is controlled so that the operatively associated solar generator operates at its maximum power point to extract maximum available power.
Owner:NEWLIGHT CAPITAL LLC

Sequentially-controlled solar array power system with maximum power tracking

A power and control architecture employing circuitry that sequentially regulate power flows from independent solar-array sources or a mixture of power sources providing power to a common load. The device may be used on a satellite with solar-array sources; however it may also be used on ground based systems. Stiff bus voltage regulation is obtained by tightly controlling the most recently activated power-processing channel while keeping the previously activated power-processing channels in the Maximum Power Tracking mode to supply maximum power to a common load. The remaining power-processing channels are turned off or operated in stand-by mode. In an alternative system, with primary design goal of uniform power sharing among solar-array sources, all solar array sources are activated with uniform power sharing at light load and, as load demand increases, sequentially controlled to operate in the Maximum Power Tracking mode one solar array source at a time as necessary.
Owner:THE AEROSPACE CORPORATION

Integrated Rectifier and Boost Converter for Wireless Power Transmission

A novel integrated rectifier and boost converter circuit architecture is disclosed. The rectifier architecture includes a plurality of identical half-bridge rectifiers connected to receiving antennas to convert wireless AC power into DC power. The integrated rectifier may be coupled in series with a charging inductor in a boost converter. The inductor may discharge upon operation of two micro-controller-driven switching transistors using predetermined threshold and timing scheme to turn on / off. The rectifier architecture may provide high power densities, improve efficiency at larger load currents, and may be enabled in an integrated circuit with eight RF signal inputs, eight half-bridge rectifiers, and eight DC outputs ganged together as single feed into the boost converter. The rectifier circuit topology may include a comparator driven by the boost controller with a proprietary algorithm which suits control for a maximum power point tracking functionality, and an external micro-controller for additional control of the boost converter.
Owner:ENERGOUS CORPORATION

System and method for over-Voltage protection of a photovoltaic string with distributed maximum power point tracking

A string over-voltage protection system and method for arrays of photovoltaic panels. The system and method includes a device for use in a photovoltaic array power system. The device includes a voltage converter. The voltage converter is adapted to be coupled to a photovoltaic panel in a string of photovoltaic panels. The device also includes a string over-voltage protection circuit. The string over-voltage protection circuit is coupled to the voltage converter. The string over-voltage protection circuit senses a string voltage and determines if a string over-voltage condition exists. Additionally, the string over-voltage protection circuit is configured to disable the voltage converter in the event of a string over-voltage condition.
Owner:NAT SEMICON CORP

Circuit for conditioning a supply at the maximum power point

A circuit for conditioning a power supply whose graph of the power supplied as a function of the voltage at the terminals of the supply features a maximum comprises a DC / DC converter with an input to which power is supplied by the power supply and an output from which power is supplied to a load. A control circuit controls the converter in accordance with a power set point applied to the converter. The set point is a rising set point when the time derivative of the converter input voltage is higher than a negative first threshold value and a falling set point when the time derivative of the converter input voltage is lower than a positive second threshold voltage. The rate of variation of the average power when the set point is a rising set point is lower than the opposite of the rate of variation of the average power when the set point is a falling set point. The conditioning circuit enables the supply to deliver power at the maximum power point and is simple to implement.
Owner:ALCATEL LUCENT SAS

Advanced Renewable Energy Harvesting

The power of DC electrical sources is combined onto a DC buss, such that each source behaves independently from any other source attached to the buss. In one embodiment, a converter module is attached to each of a plurality of solar photovoltaic panels and its output is attached in a parallel manner to a common buss that forms the input to a DC AC inverter. The converter module includes a Maximum Power Point Tracking component that matches the output impedance of the panels to the input impedance of the converter module. The converter also includes a communication component that provides parametric data and identification to a central inverter. Data generated by each converter module is transmitted over the power line or by wireless means and is collected at the inverter and forwarded to a data collection and reporting system.
Owner:EIQ ENERGY INC

Apparatus and method for enhanced solar power generation and maximum power point tracking

Disclosed is an apparatus and methodology for generating operating power for various desired applications using solar energy. A solar array is formed using a small number of solar cells connected in series to form a string of solar cells and then connecting multiple strings in parallel. Unlike conventional solar arrays, no bypass diodes are incorporated into the array. A power converter is coupled to the array to boost output voltage to a level sufficient to operate the desired application. The power converter may be operated independently or based on output levels of the array, the material from which the solar cells of the array are constructed and the operating temperature of the array or combinations thereof.
Owner:UNIVERSITY OF SOUTH CAROLINA

Method and apparatus for maximum power point tracking in power conversion based on dual feedback loops and power ripples

A method and apparatus for converting DC input power to AC output power. The apparatus comprises a conversion module comprising an input capacitor, and a first feedback loop for determining a maximum power point (MPP) and operating the conversion module proximate the MPP. The apparatus additionally comprises a second feedback loop for determining a difference in energy storage and delivery by the input capacitor, producing an error signal indicative of the difference, and coupling the error signal to the first feedback loop to adjust at least one operating parameter of the conversion module to drive toward the MPP.
Owner:ENPHASE ENERGY

Method and apparatus for controlling power drawn from an energy converter

Methods, apparatus, media and signals for controlling power drawn from an energy converter to supply a load, where the energy converter is operable to convert energy from a physical source into electrical energy. Power drawn from the energy converter is changed when a supply voltage of the energy converter meets a criterion. The criterion and the change in the amount of power drawn from the energy converter are dependent upon a present amount of power supplied to the load. The methods, apparatus, media and signals described herein may provide improvements to DC to AC maximum power point tracking in an energy conversion system such as a photovoltaic power generation system.
Owner:SCHNEIDER ELECTRIC SOLAR INVERTERS USA

Distributed inverter and intelligent gateway

A system and apparatus for generating power. In one embodiment, the apparatus comprises a power module for coupling to a DC power source via a DC bus, wherein the power module (i) converts a first power from the DC power source to a second power, and (ii) comprises a maximum power point tracking module unit for dynamically adjusting a load voltage of the DC power source; an AC bus; and a controller, physically separate from the power module and coupled to the power module via the AC bus, for operatively controlling the power module.
Owner:ENPHASE ENERGY

Method and apparatus for controlling power drawn from an energy converter

Methods, apparatus, media and signals for controlling power drawn from an energy converter to supply a load, where the energy converter is operable to convert energy from a physical source into electrical energy. Power drawn from the energy converter is changed when a supply voltage of the energy converter meets a criterion. The criterion and the change in the amount of power drawn from the energy converter are dependent upon a present amount of power supplied to the load. The methods, apparatus, media and signals described herein may provide improvements to DC to AC maximum power point tracking in an energy conversion system such as a photovoltaic power generation system.
Owner:SCHNEIDER ELECTRIC SOLAR INVERTERS USA

Distributed power harvesting systems using DC power sources

A system and method for combining power from DC power sources. Each power source is coupled to a converter. Each converter converts input power to output power by monitoring and maintaining the input power at a maximum power point. Substantially all input power is converted to the output power, and the controlling is performed by allowing output voltage of the converter to vary. The converters are coupled in series. An inverter is connected in parallel with the series connection of the converters and inverts a DC input to the inverter from the converters into an AC output. The inverter maintains the voltage at the inverter input at a desirable voltage by varying the amount of the series current drawn from the converters. The series current and the output power of the converters, determine the output voltage at each converter.
Owner:SOLAREDGE TECH LTD

Method and system for providing local converters to provide maximum power point tracking in an energy generating system

A method for providing maximum power point tracking for an energy generating device using a local buck-boost converter coupled to the device is provided. The method includes operating in a tracking mode, which includes initializing a conversion ratio for the buck-boost converter based on a previous optimum conversion ratio. A device power associated with the initialized conversion ratio is calculated. The conversion ratio is repeatedly modified and a device power associated with each of the modified conversion ratios is calculated. A current optimum conversion ratio for the buck-boost converter is identified based on the calculated device powers. The current optimum conversion ratio corresponds to one of a buck mode, a boost mode and a buck-boost mode for the buck-boost converter.
Owner:NAT SEMICON CORP

Photovoltaic inverter system and method of starting same at high open-circuit voltage

A power inverter system includes a DC to AC inverter configured to convert DC voltage from a DC power source to AC voltage. A DC link couples the DC power source and the inverter. An inverter pre-charger operates to pre-charge the inverter to achieve a desired DC link voltage prior to connecting the power inverter system to an AC power grid. A phased lock loop synchronizes the pre-charged inverter to the AC power grid prior to connecting the power inverter system to the AC power grid. The pre-charged inverter regulates the DC link voltage to about the minimum voltage level that allows control of AC grid currents via the inverter subsequent to connecting the power inverter system to the AC grid. The inverter operates in a maximum power point tracking control mode only subsequent to a first voltage transient caused by connecting the DC power source to energize the power inverter system.
Owner:GENERAL ELECTRIC CO

Maximum Power Point Tracker Bypass

A circuit arrangement, includes output terminals that provide an output current and input terminals that receive a source current and a source voltage from a DC current source. A maximum power point tracker is coupled between the input terminals and the output terminals and a bypass circuit is coupled between the input terminals and the output terminals. The bypass circuit is configured to enter a bypass state dependent on the output current and dependent on the source current. The source current flows through the bypass circuit in the bypass state.
Owner:INFINEON TECH AUSTRIA AG

Mixed maximum power point-tracing control method of photovoltaic water-raising system

A tracking and control method for the hybridded maximum power point of the photovoltaic pumping system. It contains: a, the check and choice logo, it will turn to the step b if it is ture, or it will turn to the step d. b, the output frequency of the inverter will be adjusted the running of the multiple criteria. C, the choice logo will become untrue and the reference voltage Verf=V (n), and the real running time of the normal voltage method, tCV, will be reset, and turn to the step a, or turn to the step a. d, the output frequency of the inverter will be adjusted by the running of the normal voltage method. e, To add a control cycle into the running time of the normal voltage method, tvc, the choice logo will be true if the tvc >= TVC and turn to the step a, or it will turn directly to the step a. it adjust the output frequency by the alternative running of multiple criteria and normal voltage, it can adjust the output frequency in time and control the DC voltage effectively and assure the stable running of the system, the system owns rapid and dynamic tracking characteristics, and a good stable characteristics by taking advantage of this method .
Owner:SHENZHEN GRADUATE SCHOOL TSINGHUA UNIV

Energy storage system and method of controlling the same

A grid-connected energy storage system and a method of controlling the energy storage system. In the energy storage system, a normal operation of the energy storage system and the UPS function due to electrical failure may be stably performed even if electrical failure occurs. The energy storage system includes: a maximum power point tracking (MPPT) converter outputting converted power to a first node; a battery storing power; a bi-directional inverter converting power and outputting the converted power to the load, the grid or the first node; a bi-directional converter converting and storing power in the battery and outputting the power stored in the battery to the first node; and an integrated controller controlling the MPPT converter, the bi-directional inverter and the bi-directional converter.
Owner:SAMSUNG SDI CO LTD

Photovoltaic Panel Circuitry

Circuits integrated or integrable with a photovoltaic panel to provide built-in functionality to the photovoltaic panel including safety features such as arc detection and elimination, ground fault detection and elimination, reverse current protection, monitoring of the performance of the photovoltaic panel, transmission of the monitored parameters and theft prevention of the photovoltaic panel. The circuits may avoid power conversion, for instance DC / DC power conversion, may avoid performing maximum power tracking to include a minimum number of components and thereby increase overall reliability.
Owner:SOLAREDGE TECH LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products