Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

367 results about "Dc link voltage" patented technology

The topology of a drive with a DC link varies depending upon the power rating of the drive. At lower voltages (< 600V) and powers, the DC link stage typically only has a capacitor to support the voltage between inverter and rectifier.

Power converters

The present invention provides_a power converter that can be used to interface a generator (4) that provides variable voltage at variable frequency to a supply network operating at nominally fixed voltage and nominally fixed frequency and including features that allow the power converter to remain connected to the supply network and retain control during supply network fault and transient conditions. The power converter includes a generator bridge (10) electrically connected to the stator of the generator (4) and a network bridge (14). A dc link (12) is connected between the generator bridge (10) and the network bridge (14). A filter (16) having network terminals is connected between the network bridge (14) and the supply network. A first controller (18) is provided for controlling the operation of the semiconductor power switching devices of the generator bridge (14). Similarly, a second controller (46) is provided for controlling the operation of the semiconductor power switching devices of the network bridge (14). The first controller (18) uses a dc link voltage demand signal (VDC13 GEN*) indicative of a desired dc link voltage to control the semiconductor power switching devices of the network bridge (10) to achieve the desired level of dc link voltage that corresponds to the dc link voltage demand signal (VDC13 GEN*). The second controller (46) uses a power demand signal (P*) indicative of the level of power to be transferred from the dc link to the supply network through the network bridge (14), and a voltage demand signal (VTURB*) indicative of the voltage to be achieved at the network terminals of the filter (16) to control the semiconductor power switching devices of the network bridge (14) to achieve the desired levels of power and voltage that correspond to the power and voltage demand signals (P* and VTURB*).
Owner:GE POWER CONVERSION

Power converters

The present invention provides a power converter that can be used to interface a generator that provides variable voltage at variable frequency to a supply network operating at nominally fixed voltage and nominally fixed frequency and including features that allow the power converter to remain connected to the supply network and retain control during supply network fault and transient conditions. The power converter includes a generator bridge electrically connected to the stator of the generator and a network bridge. A dc link is connected between the generator bridge and the network bridge. A filter having network terminals is connected between the network bridge and the supply network. A first controller is provided for controlling the operation of the semiconductor power switching devices of the generator bridge. Similarly, a second controller is provided for controlling the operation of the semiconductor power switching devices of the network bridge. The first controller uses a dc link voltage demand signal VDC_NET* indicative of a desired dc link voltage to control the semiconductor power switching devices of the network bridge to achieve the desired level of dc link voltage that corresponds to the dc link voltage demand signal VDC_NET*. The second controller uses a power demand signal P* indicative of the level of power to be transferred from the dc link to the supply network through the network bridge, and a voltage demand signal VTURB* indicative of the voltage to be achieved at the network terminals of the filter to control the semiconductor power switching devices of the network bridge to achieve the desired levels of power and voltage that correspond to the power and voltage demand signals P* and VTURB*.
Owner:GE POWER CONVERSION

Power converters

The present invention provides_a power converter that can be used to interface a generator (4) that provides variable voltage at variable frequency to a supply network operating at nominally fixed voltage and nominally fixed frequency and including features that allow the power converter to remain connected to the supply network and retain control during supply network fault and transient conditions. The power converter includes a generator bridge (10) electrically connected to the stator of the generator (4) and a network bridge (14). A dc link (12) is connected between the generator bridge (10) and the network bridge (14). A filter (16) having network terminals is connected between the network bridge (14) and the supply network. A first controller (18) is provided for controlling the operation of the semiconductor power switching devices of the generator bridge (14). Similarly, a second controller (46) is provided for controlling the operation of the semiconductor power switching devices of the network bridge (14). The first controller (18) uses a dc link voltage demand signal (VDC13 GEN*) indicative of a desired dc link voltage to control the semiconductor power switching devices of the network bridge (10) to achieve the desired level of dc link voltage that corresponds to the dc link voltage demand signal (VDC13 GEN*). The second controller (46) uses a power demand signal (P*) indicative of the level of power to be transferred from the dc link to the supply network through the network bridge (14), and a voltage demand signal (VTURB*) indicative of the voltage to be achieved at the network terminals of the filter (16) to control the semiconductor power switching devices of the network bridge (14) to achieve the desired levels of power and voltage that correspond to the power and voltage demand signals (P* and VTURB*).
Owner:GE POWER CONVERSION

Method and device for determining a control scheme for an active power filter

A method is provided for determining a control scheme for a neutral point clamped (NPC) voltage source converter (VSC) with at least 3 levels and a topology of three bridge legs between each of three phases of a grid and a neutral point. Each leg includes at least four active switches, and a clamping carrier modulator synchronized with the grid is provided for the control of no-switching intervals. The method includes: analyzing the waveform of the grid and/or a load voltage and determining windows defining an allowed period for no-switching of the corresponding bridge leg; operating or simulating the operation of the voltage source converter with different clamping carrier modulator frequencies, and then analyzing the balance in the operating junction temperatures and/or power losses across the active switches and also analyzing the total losses of the voltage source converter; comparing the balance and the total losses of different clamping carrier modulator frequencies and selecting either the clamping carrier modulator frequency according to showing, as primary criterion, the better balance and, as secondary criterion, the lower total losses; operating or simulating the operation of the voltage source converter with the selected clamping carrier modulator frequency, while iteratively changing at least one of the following operating parameters of the voltage source converter: switching frequency, DC-link voltage reference, duty cycle of clamping carrier modulator, phase shift of the clamping carrier modulator relative to the grid, and optimizing the balance in the operating junction temperatures and/or power losses across the active switches and the total losses of the voltage source converter as a function of the adjustment of these operating parameters until reaching optimum operation parameters for the control scheme.
Owner:GENERAL ELECTRIC TECH GMBH

Procedures and Control System to Control a Brushless Electric Motor

The present invention relates to a method and a control system for driving a three-strand brushless, electronically commutated electric motor (2), wherein a line AC voltage (UN) is rectified and fed via a slim DC link (8) with minimum DC link reactance as a DC link voltage (UZ) to an inverter (10) that can be driven to supply and commutate the electric motor (2). A pulsating DC voltage (UG) initially generated by rectifying the line AC voltage (UN) is dynamically increased with respect to its instantaneous values by a step-up chopper (18) in such a manner that the resulting DC link voltage (UZ) with a reduced ripple always lies above a defined limit voltage (U18/U1) over time. The control system consists of a network rectifier (6), a downstream slim DC link (8) with minimum DC link reactance and a controllable inverter (10) that can be supplied via the DC link and driven to commutate the electric motor (2). A step-up chopper (18) is integrated therein with a controller (20) designed in such a manner that, the pulsating DC voltage (UG) rectified by the network rectifier (6) is dynamically increased with respect to its instantaneous values in such a manner that the resulting DC link voltage (UZ) with a reduced ripple always lies above a defined limit voltage (U20/U1) over time. Stray inductances (Ls1-Ls3) of the motor winding heads present in the electric motor (2) are used as inductor (L) for the step-up chopper (18).
Owner:EBM PAPST MULFINGEN GMBH & CO KG
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products