Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2135 results about "Supply network" patented technology

A supply network is a pattern of temporal and spatial processes carried out at facility nodes and over distribution links, which adds value for customers through the manufacturing and delivery of products. It comprises the general state of business affairs in which all kinds of material (work-in-process material as well as finished products) are transformed and moved between various value-added points to maximize the value added for customers.

Method and apparatus for provisioning network devices using instructions in extensible markup language

A method is disclosed for carrying out network device provisioning and configuration, and communication of other information to a network device, automatically and in an assured manner. A configuration service receives a request from a network device to provide configuration information. The configuration service retrieves a template representing the configuration from a storage location, e.g., a directory service. The configuration service also retrieves one or more parameter values specific to the device. Device-specific values are instantiated for the generic parameters in the template, based on the retrieved values. The resulting configuration is stored in XML format using XML tags to delimit configuration commands, tested for well-formed-ness, and syntax checked. A reliable transport protocol carries the configuration information to the device. At the device, a configuration agent syntax checks the embedded configuration information, and then applies the configuration information to the device. As a result, automatic network provisioning may be accomplished remotely, without requiring a skilled technician to visit customer premises to carry out configuration. The process may be integrated with an event service to enable multiple devices to concurrently receive re-configuration without special synchronization logic.
Owner:CISCO TECH INC

Power converters

The present invention provides_a power converter that can be used to interface a generator (4) that provides variable voltage at variable frequency to a supply network operating at nominally fixed voltage and nominally fixed frequency and including features that allow the power converter to remain connected to the supply network and retain control during supply network fault and transient conditions. The power converter includes a generator bridge (10) electrically connected to the stator of the generator (4) and a network bridge (14). A dc link (12) is connected between the generator bridge (10) and the network bridge (14). A filter (16) having network terminals is connected between the network bridge (14) and the supply network. A first controller (18) is provided for controlling the operation of the semiconductor power switching devices of the generator bridge (14). Similarly, a second controller (46) is provided for controlling the operation of the semiconductor power switching devices of the network bridge (14). The first controller (18) uses a dc link voltage demand signal (VDC13 GEN*) indicative of a desired dc link voltage to control the semiconductor power switching devices of the network bridge (10) to achieve the desired level of dc link voltage that corresponds to the dc link voltage demand signal (VDC13 GEN*). The second controller (46) uses a power demand signal (P*) indicative of the level of power to be transferred from the dc link to the supply network through the network bridge (14), and a voltage demand signal (VTURB*) indicative of the voltage to be achieved at the network terminals of the filter (16) to control the semiconductor power switching devices of the network bridge (14) to achieve the desired levels of power and voltage that correspond to the power and voltage demand signals (P* and VTURB*).
Owner:GE POWER CONVERSION

Power converters

The present invention provides a power converter that can be used to interface a generator that provides variable voltage at variable frequency to a supply network operating at nominally fixed voltage and nominally fixed frequency and including features that allow the power converter to remain connected to the supply network and retain control during supply network fault and transient conditions. The power converter includes a generator bridge electrically connected to the stator of the generator and a network bridge. A dc link is connected between the generator bridge and the network bridge. A filter having network terminals is connected between the network bridge and the supply network. A first controller is provided for controlling the operation of the semiconductor power switching devices of the generator bridge. Similarly, a second controller is provided for controlling the operation of the semiconductor power switching devices of the network bridge. The first controller uses a dc link voltage demand signal VDC_NET* indicative of a desired dc link voltage to control the semiconductor power switching devices of the network bridge to achieve the desired level of dc link voltage that corresponds to the dc link voltage demand signal VDC_NET*. The second controller uses a power demand signal P* indicative of the level of power to be transferred from the dc link to the supply network through the network bridge, and a voltage demand signal VTURB* indicative of the voltage to be achieved at the network terminals of the filter to control the semiconductor power switching devices of the network bridge to achieve the desired levels of power and voltage that correspond to the power and voltage demand signals P* and VTURB*.
Owner:GE POWER CONVERSION

Power converters

The present invention provides_a power converter that can be used to interface a generator (4) that provides variable voltage at variable frequency to a supply network operating at nominally fixed voltage and nominally fixed frequency and including features that allow the power converter to remain connected to the supply network and retain control during supply network fault and transient conditions. The power converter includes a generator bridge (10) electrically connected to the stator of the generator (4) and a network bridge (14). A dc link (12) is connected between the generator bridge (10) and the network bridge (14). A filter (16) having network terminals is connected between the network bridge (14) and the supply network. A first controller (18) is provided for controlling the operation of the semiconductor power switching devices of the generator bridge (14). Similarly, a second controller (46) is provided for controlling the operation of the semiconductor power switching devices of the network bridge (14). The first controller (18) uses a dc link voltage demand signal (VDC13 GEN*) indicative of a desired dc link voltage to control the semiconductor power switching devices of the network bridge (10) to achieve the desired level of dc link voltage that corresponds to the dc link voltage demand signal (VDC13 GEN*). The second controller (46) uses a power demand signal (P*) indicative of the level of power to be transferred from the dc link to the supply network through the network bridge (14), and a voltage demand signal (VTURB*) indicative of the voltage to be achieved at the network terminals of the filter (16) to control the semiconductor power switching devices of the network bridge (14) to achieve the desired levels of power and voltage that correspond to the power and voltage demand signals (P* and VTURB*).
Owner:GE POWER CONVERSION

Method for operating a wind park

Wind power installations were initially always erected in the form of individual units and it is only in recent years that, caused also by administrative and building regulations, wind power installations are frequently installed in wind parks. In that respect a wind park in its smallest unit is an arrangement of at least two wind power installations, but frequently markedly more. By way of example mention may be made of the wind park at Holtriem (East Frisia) where more than 50 wind power installations are set up in an array. It is to be expected that the number of units and also the installed power of the wind power installations will also increase greatly in the forthcoming years. In most cases the wind potential is at its greatest in regions of the power supply networks with a low level of short-circuit power and low population density. It is precisely there that the technical connection limits are quickly reached by the wind power installations, with the result that it is then no longer possible for further wind power installations to be set up at such sites._A method of operating a wind park comprising a plurality of wind power installations, wherein the wind park is connected to an electrical power supply network into which the electrical power produced by the wind park is fed and the wind park and / or at least one of the wind power installations of the wind park has a control input, by means of which the electrical power of the wind park or one or more individual wind power installation or installations can be set in a range of between 0 and 100% of the respective power to be made available, in particular the nominal power, and that there is provided a data processing apparatus which is connected to the control input and by means of which the setting value is set in the range of between 0 and 100%, depending on how great is the power that the overall wind park provides at its output for feeding into the energy network and wherein the operator (PSU) of the electrical supply network to which the wind park is connected can adjust the power delivered by the wind park by way of the control input.
Owner:WOBBEN ALOYS

Method and apparatus for pre-provisioning networks to support fast restoration with minimum overbuild

Improved network design techniques are provided. More particularly, the invention provides network design techniques for pre-provisioning networks to support fast restoration with minimum overbuild. In one aspect of the invention, a technique for designing a protection capacity to be reserved in a network comprises the following steps / operations. One or more link capacities associated with a network topology are obtained, wherein the network is assumed to have no pre-existing working traffic. A capacity partition is determined for at least one link in the network topology, the capacity partition comprising a working capacity portion and a protection capacity portion, the protection capacity portion being reserved for rerouting working traffic upon a failure. The capacity partition determination step / operation enables control over the number of backup tunnels, associated with the at least one link, on which working traffic can be rerouted. Further, the capacity partition determination step / operation substantially guarantees at least one of a minimal failure restoration time and a minimal overbuild. A minimal overbuild may comprise an overbuild equivalent to no more than two times an overbuild required for an optimal solution.
Owner:WSOU INVESTMENTS LLC +1

Method for provisioning network service provider application in digital interactive broadcasting environment

There is provided a method for provisioning a network service provider application in a digital interactive broadcasting environment. The method comprises the steps of: A) at a broadcasting headend server, incorporating an application provisioning descriptor including at least an application version information and a location information of the application to be provisioned into an application information table (AIT table) and transmitting the AIT table through a digital broadcasting network in a form of ATTS (always tuned transport stream); and B) at a user set-top box, b-1) checking the application version information specified in the application provisioning descriptor and a downloaded status of the application, and comparing the application version information with a version information of an application previously stored into the set-top box, b-2) if the application version specified in the application provisioning descriptor is the same with the version of the application previously stored in the set-top box and downloading of the application has been performed normally, executing the previously stored application without any downloading, and b-3) if the application version specified in the application provisioning descriptor is different from the version of the application previously stored in the set-top box or if downloading of the application has been performed abnormally, accessing and downloading the application based on the location information of the application to be provisioned, which is specified in the application provisioning descriptor.
Owner:ALTIMEDIA CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products