Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

11971results about "PV power plants" patented technology

System and method for monitoring photovoltaic power generation systems

A system and method for monitoring photovoltaic power generation systems or arrays, both on a local (site) level and from a central location. The system includes panel and string combiner sentries or intelligent devices, in bidirectional communication with a master device on the site to facilitate installation and troubleshooting of faults in the array, including performance monitoring and diagnostic data collection.
Owner:SOLAR SENTRY

Efficiency booster circuit and technique for maximizing power point tracking

The present invention provides an efficiency booster circuit and accompanying switch mode power conversion technique to efficiently capture the power generated from a solar cell array that would normally have been lost, for example, under reduced incident solar radiation. In an embodiment of the invention, the efficiency booster circuit generates an output current from the solar cell power source using a switch mode power converter. A control loop is closed around the input voltage to the converter circuit and not around the output voltage. The output voltage is allowed to float, being clamped by the loading conditions. If the outputs from multiple units are tied together, the currents will sum. If the output(s) are connected to a battery, the battery's potential will clamp the voltage during charge. This technique allows all solar cells in an array that are producing power and connected in parallel to work at their peak efficiency.
Owner:ISG TECH

Converter circuit and technique for increasing the output efficiency of a variable power source

The present invention provides a converter circuit and accompanying switch mode power conversion technique to efficiently capture the power generated from a solar cell array that would normally have been lost, for example, under reduced incident solar radiation. In an embodiment of the invention, the converter circuit generates an output current from the solar cell power source using a switch mode power converter. A control loop is closed around the input voltage to the converter circuit and not around the output voltage. The output voltage is allowed to float, being clamped by the loading conditions. If the outputs from multiple units are tied together, the currents will sum. If the output(s) are connected to a battery, the battery's potential will clamp the voltage during charge. This technique allows all solar cells in an array that are producing power and connected in parallel to work at their peak efficiency.
Owner:ISG TECH

Process for Polycrystalline film silicon growth

A process for depositing polycrystalline silicon on substrates, including foreign substrates, occurs in a chamber at about atmospheric pressure, wherein a temperature gradient is formed, and both the atmospheric pressure and the temperature gradient are maintained throughout the process. Formation of a vapor barrier within the chamber that precludes exit of the constituent chemicals, which include silicon, iodine, silicon diiodide, and silicon tetraiodide. The deposition occurs beneath the vapor barrier. One embodiment of the process also includes the use of a blanketing gas that precludes the entrance of oxygen or other impurities. The process is capable of repetition without the need to reset the deposition zone conditions.
Owner:ALLIANCE FOR SUSTAINABLE ENERGY

Back-contact photovoltaic cells

A photovoltaic cell comprising a wafer comprising a semiconductor material of a first conductivity type, the wafer comprising a first light receiving surface and a second surface opposite the first surface; a first passivation layer positioned over the first surface of the wafer; a first electrical contact positioned over the second surface of the wafer; a second electrical contact positioned over the second surface of the wafer and separated electrically from the first electrical contact; a second passivation layer positioned over the second surface of the wafer in the region on the wafer that is at least between the first electrical contact and the second surface of the wafer; and a layer comprising a semiconductor material of a conductivity opposite the conductivity of the wafer and positioned in the region between the second passivation layer and the first contact.
Owner:BP CORP NORTH AMERICA INC

Monolithic integration of cylindrical solar cells

A solar cell unit comprising a substrate and a plurality of photovoltaic cells is provided. The substrate has a first end and a second end. The plurality of photovoltaic cells, which are linearly arranged on the substrate, comprises a first photovoltaic cell and a second photovoltaic cell. Each photovoltaic cell in the plurality of photovoltaic cells comprises (i) a back-electrode circumferentially disposed on the substrate, (ii) a semiconductor junction layer circumferentially disposed on the back-electrode, and, (iii) a transparent conductive layer circumferentially disposed on the semiconductor junction. The transparent conductive layer of the first photovoltaic cell in the plurality of photovoltaic cells is in serial electrical communication with the back-electrode of the second photovoltaic cell in the plurality of photovoltaic cells.
Owner:SOLYNDRA RESIDUAL TRUST

Charging display system

In one aspect, a method is provided for operating a charging display system that is capable of wirelessly charging a rechargeable device positioned on a connector-less charging surface. In accordance with the method, the presence of a chargeable device on the charging surface is detected and the type of the chargeable device is identified. A set of interaction options based upon the identity of the chargeable device with the set, including a charging interaction option, is determined and, a displayable output signal based upon the determined set interaction options is generated. The set of interaction options is initiated based upon the detected presence of the chargeable device on the charging surface and the identified device type and, the output signal is presented on a display of the charging device.
Owner:APPLE INC

Photovoltaic dc/dc micro-converter

A photo-voltaic (PV) power generating system and a control system for PV array string-level control and PV modules serially-connected into strings of PV modules. The system includes plural parallel strings of serially-connected power-generating photovoltaic modules that form a PV array, DC / DC micro-converters that are coupled to a DC voltage buss and to the output of a corresponding photovoltaic module or to the output of a string of photovoltaic modules; a gating or central inverter; and a control system. The control system is structured and arranged to control and manage each string of photovoltaic modules, to ensure that power delivered by the photovoltaic power generating system is not affected by photovoltaic modules or strings of photovoltaic modules that are not operating at maximum power transfer efficiency.
Owner:PERFECT GALAXY INT

Solar array resembling natural foliage including means for wireless transmission of electric power

The present invention teaches a solar array, and also a network of solar arrays for providing energy for industrial, residential and transportation use. A solar array of the present invention can be made to resemble a palm tree, a deciduous tree, an evergreen tree, or other type of natural foliage, and meet the aesthetic demands of landscape architecture. A network of solar arrays can extend for many miles along transportation right of ways including, but not limited to, roads, highways, railways, pipelines, or canals, and can further include means for storing and transmitting energy. A solar array can include or be coupled with a recharging station for use by electric and hybrid transportation vehicles. Moreover, an individual solar array or network of solar arrays can include means for wireless communication and transmission of energy for recharging an energy storage device and provide energy to an electric or hybrid transportation vehicle.
Owner:LYDEN ROBERT M

Method and apparatus for mounting photovoltaic modules

An interlocking photovoltaic module mounting system that provides a one piece, integrated photovoltaic module frame portion that is directly mountable to a support structure and interlocks with separate adjoining photovoltaic module frame portions. The apparatus includes a frame member for enclosing the perimeter of a photovoltaic module, having an inside surface and outside surface, with the inside surface including a recess for capture of the panel. The frame member outside surface includes at least one interlocking means for affixation to the complementary outside surface of an adjacent frame-member. The frame member includes a height-adjustable foot portion for supporting the frame member on a roof, so that adjacent frame members may be interlocked to form an array, and the foot portion may be adjusted to level the formed array on the roof.
Owner:TESLA INC

Solar concentrator for heat and electricity

PCT No. PCT / NZ95 / 00084 Sec. 371 Date Feb. 28, 1997 Sec. 102(e) Date Feb. 28, 1997 PCT Filed Sep. 14, 1995 PCT Pub. No. WO96 / 08683 PCT Pub. Date Mar. 21, 1996A solar concentrator for producing usable power as heat and / or electricity uses a self-steering heliostat 1502 to concentrate solar radiation 1509 onto an absorbing surface such as, or including, a solar cell array 1511 capable of absorbing power from the radiation, meanwhile removing heat (such as from long-wave infra-red radiation or resistive losses) from the surface with fluid heat transfer means 1503, 1504, then making effective use of that low-grade heat. Thus the solar cell array is kept relatively cool and a larger proportion of the solar energy incident on the reflector unit is used. The invention uses electricity 1506 from the solar cells to move a transporting fluid through a heat exchanger 1504. Excess electricity may be available for local storage or use 1510, or feeding 1512 to the power distribution grid. Applications include warming swimming pools 1501, heating hot-water supplies using excess electricity, or warming, lighting and ventilating open spaces.
Owner:JOHNSON COLIN FRANCIS

Manufacturing apparatus and method for large-scale production of thin-film solar cells

A method of manufacturing improved thin-film solar cells entirely by sputtering includes a high efficiency back contact / reflecting multi-layer containing at least one barrier layer consisting of a transition metal nitride. A copper indium gallium diselenide (Cu(InXGa1-x)Se2) absorber layer (X ranging from 1 to approximately 0.7) is co-sputtered from specially prepared electrically conductive targets using dual cylindrical rotary magnetron technology. The band gap of the absorber layer can be graded by varying the gallium content, and by replacing the gallium partially or totally with aluminum. Alternately the absorber layer is reactively sputtered from metal alloy targets in the presence of hydrogen selenide gas. RF sputtering is used to deposit a non-cadmium containing window layer of ZnS. The top transparent electrode is reactively sputtered aluminum doped ZnO. A unique modular vacuum roll-to-roll sputtering machine is described. The machine is adapted to incorporate dual cylindrical rotary magnetron technology to manufacture the improved solar cell material in a single pass.
Owner:BEIJING APOLLO DING RONG SOLAR TECH

Solar power generation apparatus, solar power generation system, and method of manufacturing solar power generation apparatus

A solar cell assembly including a plurality of solar cells is formed on a common substrate, and a DC / DC converter which converts the output from the solar cell is connected to each solar cell to constitute a solar power generation apparatus. The output from the solar power generation apparatus is converted into an AC power by an inverter and supplied to a load or commercial AC power system. Since the arrangement is simplified, the manufacturing cost can be reduced, and the influence of partial shade or a variation in characteristic decreases.
Owner:CANON KK

System and method for an array of intelligent inverters

A system and method for DC to AC conversion in a power generating array. The system and method includes a number of inverters coupled to a group of solar panels. A group controller coordinates operation of the inverters for interleaved switching of the inverters. The group controller communicates via a local area network, a wireless network, or both, to coordinate operation with additional groups of inverters coupled in parallel with additional solar panels.
Owner:NAT SEMICON CORP

Systems and Methods for an Enhanced Watchdog in Solar Module Installations

Systems and methods are disclosed for automatically or remotely rendering a solar array safe during an emergency or maintenance. A watchdog unit is disclosed for monitoring a signal from a central controller. If the signal is lost, interrupted, or becomes irregular, or if a shutdown signal is received, then the watchdog unit can shutdown one or more solar modules. Shutting down a solar module can mean disconnecting it from a power bus of the solar array or lowering the solar module voltage to a safe level.
Owner:NEWLIGHT CAPITAL LLC

Solar energy-operated street-lamp system

A solar energy-operated street-lamp device is disclosed. The solar energy-operated street-lamp device is characterized in that the solar energy-operated device includes a solar energy-operated absorption board, a circuit board and a storage battery that is mounted within a post seat of the lamp-post. The power stored in the storage battery will be delivered to an LED via circuit board to provide illumination. The solar energy absorption board and the transparent protective hood are of arc-shape so that the sunlight can be converged onto the solar energy absorption board and at the same time, dust particles and birds' excrement or fallen leaves will not be collected on the surface of the hood surface.
Owner:WANG CHAO HSIANG

Wireless power transfer system, power transmitter, and rectenna base station

A wireless power transfer system includes: a plurality of power transmitters, each of which transmits a microwave; and a rectenna base station which receives the microwave to generate power. The rectenna base station includes: a rectenna; and control section which specifies an identification code for identifying each power transmitter and generates a command signal to change a phase of the power transmitter specified by identification code so as to increase a power value received at the rectenna. Each of the power transmitters comprises: a plurality of transmission antenna elements, each of which transmits the microwave to the rectenna base station; and a phase controller which makes phase change of the microwave based on the command signal from the phase monitor and control section of the rectenna base station if the identification code matches a stored identification code.
Owner:MITSUBISHI ELECTRIC CORP

Alternating current photovoltaic building block

A modular apparatus for and method of alternating current photovoltaic power generation comprising via a photovoltaic module, generating power in the form of direct current; and converting direct current to alternating current and exporting power via one or more power conversion and transfer units attached to the module, each unit comprising a unitary housing extending a length or width of the module, which housing comprises: contact means for receiving direct current from the module; one or more direct current-to-alternating current inverters; an alternating current bus; and contact means for receiving alternating current from the one or more inverters.
Owner:NAT TECH & ENG SOLUTIONS OF SANDIA LLC

Rechargeable lithium/water, lithium/air batteries

Electrochemical cells, and more specifically, rechargeable batteries comprising lithium anodes for use in water and / or air environments, as well as non-aqueous and non-air environments, are presented. In one embodiment, an electrochemical cell includes an anode comprising lithium and a multi-layered structure positioned between the anode and an electrolyte of the cell. A multi-layered structure can include at least a first single-ion conductive material layer (e.g., a lithiated metal layer), and at least a first polymeric layer positioned between the anode and the single-ion conductive material. The invention also can provide an electrode stabilization layer positioned within the electrode, i.e., between one portion and another portion of an electrode, to control depletion and re-plating of electrode material upon charge and discharge of a battery. Advantageously, electrochemical cells comprising combinations of structures described herein are not only compatible with environments that are typically unsuitable for lithium, but the cells may be also capable of displaying long cycle life, high lithium cycling efficiency, and high energy density.
Owner:SION POWER CORP

Direct current combiner box with power monitoring, ground fault detection and communications interface

A combiner box is used to collect direct current from solar panels or other energy sources. The combiner box integrates all means necessary for ground fault detection, current monitoring, voltage monitoring, and power monitoring. The combiner box may include a communication interface suitable for Web enabled monitoring, electronic notifications of system status, and / or remote control of system functions. In one embodiment, the combiner box uses integrated circuits and printed circuit board technology to achieve new efficiencies in manufacturing, installation and system analysis at the string level. A separate hand piece may be used by installers to test the performance of the combiner box, installation of the solar panels, performance of the solar panels and connections between the solar panels and the combiner box.
Owner:ENERGY RECOMMERCE

Multi-junction photovoltaic cell

InactiveUS6660928B1Useful radiation hardnessCell efficiency and power densityPV power plantsSolid-state devicesLattice mismatchSolar cell
A solar cell comprising a substrate, a buffer layer, a first subcell, a second subcell, and a third subcell, where said first subcell, said second subcell, and said third subcell are lattice matched, and where said substrate is lattice mismatched with said first, second, and third subcells.
Owner:ESSENTIAL RES

Use of doped silicon dioxide in the fabrication of solar cells

In one embodiment, a method of forming doped regions in a substrate of a back side contact solar cell includes the steps of depositing a first doped oxide layer on a back side of a substrate, depositing a first undoped oxide layer over the first doped oxide layer, diffusing a first dopant from the first doped oxide layer into the substrate to form a first doped region in the substrate, and diffusing a second dopant into the substrate by way of a front side of the substrate, wherein the diffusion of the first dopant and the second dopant into the substrate are performed in-situ. The method may further include the steps of patterning the first doped and undoped oxide layers to expose portions of the back side of the substrate and depositing a second doped and undoped oxide layers on the back side of the substrate.
Owner:MAXEON SOLAR PTE LTD +1

Manufacturing of optoelectronic devices

A method for manufacturing optoelectronic devices is disclosed. A layered structure may be formed with a plurality of layers including a bottom electrode layer, a top electrode layer, and one or more active layers between the top and bottom electrode layers. The layered structure is divided into one or more separate device module sections by cutting through one or more of the layers of the layered structure. At least one of the layers is an unpatterned layer at the time of cutting. Each of the resulting device module sections generally includes a portion of the active layer disposed between portions of the top and bottom electrode layers. An edge of a device section may optionally be protected against undesired electrical contact between two or more of the bottom electrode, top electrode and active layer portions. Two or more device module sections may be assembled into a device and connected in series by electrically connecting the bottom electrode layer portion of one device section to the top electrode layer portion of another device module section.
Owner:AERIS CAPITAL SUSTAINABLE IP

System and method for over-Voltage protection of a photovoltaic string with distributed maximum power point tracking

A string over-voltage protection system and method for arrays of photovoltaic panels. The system and method includes a device for use in a photovoltaic array power system. The device includes a voltage converter. The voltage converter is adapted to be coupled to a photovoltaic panel in a string of photovoltaic panels. The device also includes a string over-voltage protection circuit. The string over-voltage protection circuit is coupled to the voltage converter. The string over-voltage protection circuit senses a string voltage and determines if a string over-voltage condition exists. Additionally, the string over-voltage protection circuit is configured to disable the voltage converter in the event of a string over-voltage condition.
Owner:NAT SEMICON CORP

Nanosatellite solar cell regulator

A solar cell regulator in a nanosatellite includes a pulse width modulated DC-DC boost converter and a peak power tracking controller for converting solar cell power to bus power for charging of system batteries and powering loads while the controller controls the pulse width modulation operation of the converter for sensing solar cell currents and voltages along a power characteristic curve of the solar cell for peak power tracking, for determining any power data point, including a peak power point, an open circuit voltage point, and a short circuit current point along the power characteristic curve of the solar cell, and for communicating the power data to a satellite processor for monitoring the performance of the solar cell during operational use of the satellite.
Owner:THE AEROSPACE CORPORATION
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products