Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

4512 results about "Dust particles" patented technology

Ion-catching, broad-spectrum, highly effective, dynamic and quick air sterilization purifier

A ionic catching broad-spectrum highly effective dynamic rapid air sterilizing and cleaning machine, belonging to field of application research of air ionizing technique in the artificial environmental science, electrical climatology and iatrophysics; comprising power supply, air quality regulating display, fan or drive air flow, negative high pressure generator, electrical dust collector connected with earth inside and outside of the machine, and negative oxygen ion emission electrode; the negative end of the negative high pressure generator is connected with negative oxygen ion emission electrode to emit negative oxygen ion of high concentration to space, the positive end of it is connected with earth and electrical dust collector; the air quality regulating display can be equipped with water spray in outside, the water spray together with the fine particle in air acts as carrier adsorbing various pollutant in room air, and becomes negative larger dust particle gradually by using negative oxygen ion as kernel, and when its gravity together with the electric field force is larger than floating force, it will quickly fall to positive earth and dust collector, through which realizes purpose of broad-spectrum highly effective dynamic rapid air sterilizing and cleaning, and thus effectively controls the disease spread.
Owner:仇剑梅

Device and method for abnormally cutting toughened glass by ultra-short pulse laser

The invention relates to a device and method for abnormally cutting a toughened glass by ultra-short pulse laser. An output end of an ultra-short pulse laser apparatus is provided with an optical gate, an output end of the optical gate is provided with a beam expander, an output end of the beam expander is provided with a 45-degree holophote, an output end of the 45-degree holophote is provided with a three-dimensional (3D) dynamical focusing system, an output end of the 3D dynamical focusing system is provided with a telecentric field lens which is arranged facing to a platform above which a blowing device is arranged. When the ultra-short pulse laser device is used to cut, a heating device is used for heating the glass; the ultra-short pulse laser is focused in the glass by the 3D dynamical focusing system to abnormally scan the glass along with the laser, and the whole processing procedure is in helical processing; a suction dust-collecting device at the bottom of the platform is used for collecting the scanned glass slag; and the blowing device on the platform is used for blowing the slag and dust particles processed on the surface of the glass. The abnormal graph processing to the toughened glass is a processing form with smooth cutting surface and high cutting efficiency.
Owner:SUZHOU DELPHI LASER

Turbine cooling air centrifugal particle separator

A centrifugal particle separator (202) is provided for removing particles such as dust particles from the compressed airflow (110) prior to reaching and cooling the turbine blades (122, 124, 126) of a turbine engine (100). A particle separator structure (208) has a side facing the axis (118) about which it rotates, the side including a plurality of pocket dividers (214) defining a plurality of pockets (216), and further defining an entrance cavity (206) for receiving the compressed air (110) containing particles. An inner flowpath coupling (218) includes a side opposed to the axis (118) that is positioned adjacent the particle separator structure (208) to define an airflow path (220) having an entrance communicating with the entrance cavity (212) and an exit (222), wherein the diameter (226) of the airflow outer flowpath (224) decreases from the entrance to the exit, and wherein a centrifugal force created by the centrifugal particle separator assembly (202) rotating around the axis (118) and the decreasing diameter (226) of the airflow path (224) which accelerates the rotational velocity of the air, forces the particles (228) to collect within the plurality of pockets (216) and the remaining compressed air is provided to cool turbine blades (122, 124, 126). A plurality of optional air accelerator fins (210) may be positioned within the entrance cavity (212). The combination of quickly accelerating air from non-rotating to rotating velocity, for example, by accelerator fins (210), and further subjecting the air and entrained particles to increasing rotational velocity resulting in an increasing centrifugal force field as particles (228) progress from the entrance (212) to the exit (222) of the separator assembly (202), efficiently removes the particles (228) from the air.
Owner:HONEYWELL INT INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products