Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

16915 results about "Centrifugal force" patented technology

In Newtonian mechanics, the centrifugal force is an inertial force (also called a "fictitious" or "pseudo" force) that appears to act on all objects when viewed in a rotating frame of reference. It is directed away from an axis passing through the coordinate system's origin and parallel to the axis of rotation. If the axis of rotation passes through the coordinate system's origin, the centrifugal force is directed radially outwards from that axis. The concept of centrifugal force can be applied in rotating devices, such as centrifuges, centrifugal pumps, centrifugal governors, and centrifugal clutches, and in centrifugal railways, planetary orbits and banked curves, when they are analyzed in a rotating coordinate system. The term has sometimes also been used for the reactive centrifugal force that may be viewed as a reaction to a centripetal force in some circumstances.

Vacuum cleaner having a cyclone type dust collecting apparatus

A vacuum cleaner includes a cleaner body, a suction brush, through which air and contaminants are drawn in, and a cyclone type dust collecting device. The cleaner body has a motor driving chamber and a dust collecting chamber in communication with the motor driving chamber. The cyclone type dust collecting device is mounted in the dust collecting chamber and separates by centrifugal force the contaminants from the air. The cyclone type dust collecting device includes a hollow cylindrical cyclone body having an open top, a closed bottom, and a contaminant outlet. The open top allows air and contaminants into the cyclone body, where the contaminants are separated from the air by centrifugation. The contaminants are then discharged from the cyclone body through the contaminant outlet. The cyclone type dust collecting device further includes a contaminant receptacle for collecting the contaminants discharged through the contaminant outlet, a base member hingedly connected to the contaminant receptacle, and a cover for covering the top of the cyclone body. The cover has an air inlet passage, through which air and contaminants drawn in through the suction brush enter into the cyclone body, an air outlet passage, through which the air is discharged from the cyclone body, and a contaminant separating grill. The grill extends downward from the air outlet passage into the cyclone body and has a plurality of fine holes.
Owner:SAMSUNG GWANGJU ELECTRONICS CO LTD

Supersonic swirling separator 2 (Sustor2)

Sustor2 provides deep cooling of a gas flow, practically total condensation of a vapor, and fast and effective removal of the condensed liquid with a significantly reduced pressure losses compared with the prior art. Sustor2 performs the said operations by developing a strong swirling flow starting from its entrance, followed by spiral flow convergence in the inlet disc-like part, and then in a converging-diverging nozzle, by centrifugal removal of droplets, and removal of the liquid film through slits, then by spiral flow divergence and leaving the vortex chamber through tangential outlet.A gas enters from a pipeline (see the arrow in the A-A cross-section shown in FIG. 7) connected to Sustor2 by a flange and the inlet transition pipe ITP in FIG. 7, spirally converged in the disc-like part, marked by A-A in FIG. 6, enters the converging-diverging nozzle (FIG. 6). The flow is high-speed and swirling even at the near-entrance region of the vortex chamber. This swirl results in the centrifugal force that presses the through-flow to the sidewall. The flow accelerates near the nozzle throat up to a supersonic velocity with subsonic axial and supersonic swirl velocity components. This acceleration results in the gas temperature drop down to 200K and even less values. The reduced temperature causes rapid condensation of vapor into droplets. The centrifugal force pushes the droplets to the sidewall where they are removed through slits. Next the dried gas spirally diverges and leaves the vortex chamber through the tangential outlet. This results in the pressure recovery and transformation of the swirl kinetic energy into the longitudinal kinetic energy of the gas. Both the effects decrease pressure losses which is the Sustor2 advantage compared with the prior art.
Owner:BORISSOV ANATOLI +2

Plasma concentrator device

A plasma concentrator of this invention having a concentrator chamber, concentrator gel beads, a filter, and an agitator. The agitator has agitator blades extending outwardly from the lower end. The agitator end is positioned in the concentrator chamber and supported for rotation about its central axis and for reciprocal movement along its central axis. The concentrator has a top with an upper opening through which the upper end of the actuator stem extends, and a lower opening in which the filter is positioned. The concentrator chamber can have a cylindrical inner wall, and the agitator blades can have an outer edge in close proximity to the inner wall with the space between the outer edge and the inner wall being less than the diameter of the gel beads. The filter is selected to block effective flow of plasma therethrough under ambient gravity conditions and permit plasma and plasma concentrate flow therethrough under centrifugal forces of the separation gravity. The method concentrates plasma by removing water without significantly denaturing the fibrinogen in the plasma. The plasma is introduced into a concentration chamber containing a plurality of dehydrated concentrator gel beads and an agitator. Then water is removed from the plasma while stirring the beads to reduce plasma polarization and breaking up clumps of beads that form during the agitation. Then centrifugal force can be applied to the concentrated plasma in an amount sufficient to separate a substantial portion of the plasma concentrate from the beads.
Owner:HANUMAN +1

Variable magnetic resistance unit for an exercise device

An automatically adjusting magnetic resistance unit for an exercise device such as a bicycle trainer, in which the degree of resistance is automatically and non-linearly adjusted in relation to the rotational speed of a rotating member caused by the input of a user. The rotating member may be in the form of a flywheel having a number of supports extending between a hub and a rim. The supports define longitudinal grooves which slidably retain magnets that are biased inwardly toward the hub by biasing members. An electrically conductive member is located adjacent the flywheel. As the flywheel rotates in response to rotation of the bicycle wheel, the magnets interact with the conductive member to establish eddy currents that provide resistance to the rotation of the flywheel. The speed of rotation of the flywheel increases as the speed of rotation of the bicycle wheel increases, and centrifugal forces act on the magnets to cause the magnets to slide outwardly along the grooves in opposition to the bias of the biasing members. The outward movement of the magnets causes outward movement of the eddy current forces, to increase the resistance provided to rotation of the flywheel and the bicycle wheel. The variable resistance due to the increased or decreased rotational speed of the flywheel is smooth, based on the constant interaction of the counteracting forces of the biasing members and the centrifugal forces acting on the magnets.
Owner:SARIS EQUIP LLC

Downhole gas-liquid separation device and working method thereof

A downhole gas-liquid separation device comprises a barrel-shaped body, and a positioning wheel is fixedly installed in the body. A rotatable swirling wheel is installed on the positioning wheel and provided with spiral wheel blades, and the positioning wheel is provided with fluid channels. A lower connector is connected to the body, a diverting joint is arranged at the inner end, located in an inner cavity of the body, of the lower connector, a gas outlet channel is formed in the center of the diverting joint in a coaxial mode, and the outer side of the diverting joint is provided with liquid drainage channels. An interval is formed between the swirling wheel and the diverting joint. The downhole gas-liquid separation device is small in part number, simple in structure and lower in cost; the swirling wheel is driven to rotate when liquid passes through the swirling wheel to enable the liquid to generate centrifugal force and swirlingly flow in the inner cavity in the mode of being attached to the wall, the liquid in gas is gathered to the center, and then the liquid and the gas flow out through the liquid drainage channels formed in the outer side and the gas outlet channel formed in the center respectively, so that gas and liquid separation is achieved; accordingly, the liquid sent to a motor does not contain the gas, damage to the motor is avoided, and the service life of the motor is prolonged.
Owner:JEREH ENERGY SERVICES
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products