Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1064 results about "Transit time" patented technology

Wearable Pulse Wave Velocity Blood Pressure Sensor and Methods of Calibration Thereof

An apparatus and methods for performing a circulatory measurement on an extremity, such as a hand, of a subject. The circulatory measurement results in the derivation of an output circulatory metric that may encompass blood pressure or various other circulatory metrics. An indicator of an input circulatory metric at a locus on the extremity is measured, such as a pulse transit time. To determine the pulse transit time, a first plethysmographic signal may be obtained at a first position on the extremity, while a second plethysmographic signal may be obtained at a second position on the extremity of the subject. A transit time characterizing a circulatory pressure wave is calculated based on the first and second plethysmographic signals, leading to derivation of a wave speed. A calibration is then applied to provide the circulatory measurement based at least on the derived wave speed and a measured indicator of a hydrostatic component of blood pressure. Calibration is provided, in certain described embodiments, by derivation of two calibration parameters, a gain and a pulse transit time at zero pressure. Methods for deriving the calibration parameters include performing measurements under distinct hydrostatic pressure conditions, and based upon a measured derivative with respect to pressure of the pulse wave velocity.
Owner:MASSACHUSETTS INST OF TECH

3-D imaging multiple target laser radar

A three dimensional imaging device is presented which uses a single pulse from a pulsed light source to detect objects which are obscured by camouflage, fog or smoke but otherwise enveloped by a light-transmitting medium. The device simultaneously operates in two modes, light reflected from the nearest object is processed to form a three-dimensional image by an array of pixels. This first image is based upon the light-pulse transit time recorded in each pixel. Each pixel also contains a high-speed analog memory that sequentially stores reflected signals at a repeated time interval. The first reflection acts as a time base that controls when the analog memory begins or ends the storage sequence. The first return could be from a camouflage net and the amplitudes of the return signals, after the first return, would then be from objects behind the net. Computer processing these amplitudes reveals the three-dimensional nature of the obscured objects.The device consists of the pulsed light source, optics for collecting the reflected light, a sensor for detecting the light and converting it to electrical data, drive and output electronics for timing and signal conditioning of data generated by the sensors and a computer for processing the sensor data and converting it to a three dimensional image. The sensor collects and processes the light data in a unique manner, first converting it to electricity by a number of alternate detector technologies and then using integrated circuit chips which consist of a two dimensional array of electronic pixels also called unit cells. The two dimensional array defines two dimensions of the image. Stored within each unit cells is data associated with the third dimension, ranges of targets, and amplitudes of target reflections. This data is read out of the integrated circuit chip in the time interval between laser pulses to a processing computer. The processing computer corrects the data and, by means of computer algorithms specific to the device, converts the data to a three-dimensional image of one or more targets. This image may be viewed or processed electronically to isolate targets.
Owner:CONTINENTAL AUTONOMOUS MOBILITY US LLC

Inventory control and prescription dispensing system

An inventory control and prescription management and dispensing system including a dispensing vault for storing and dispensing prescriptions, the dispensing vault in communication with a central computer system that, in turn, communicates with prescription providers, insurance companies, and other third parties; the dispensing vault including robotic means for randomly accessing pre-filled prescriptions within the vault, with the vault further including RFID, bar code, and other means for verifying the content and internal location of pre-filled prescriptions; a customer interface that uses customer biometrics to ID a customer to ensure that prescriptions are only dispensed to the correct person; a patient registration system in communication with the central computer system for collecting insurance, doctor, biometric, and other information to facilitate transactions; a labeling system for labeling pre-filled prescriptions with customer specific information upon dispensing; transport container that integrate into the dispensing vault and provide secure transportation from a pharmaceutical manufacturer or repackager to the dispensing vault, security provided through RFID tags which communicate with the central computer to verify that the transport container contains the correct formulary and that the integrity of the container (temperature range, time in transit, tampering) has not been compromised; a payment system integral to the dispensing vault that is in communication with third party banks and pharmacy billing management systems, credit agencies and the central computer; a verification system for ensuring that pre-filled bottles received from the manufacturer (before they are placed into the storage locations inside the vault) have not had their integrity compromised, with this system evaluating each container's weight, size, moisture content, shape, velocity change, color, pattern, and physical integrity (all comparisons made against standards stored in the central computer).
Owner:DRAPER LONNIE

Method and apparatus for photographing traffic in an intersection

An apparatus of the invention includes a device for triggering a camera to photograph a vehicle within a traffic intersection, where the triggering of the camera is dependent on the speed of the vehicle before entering the intersection and may also be dependent on presence information. The device includes a sensor system (or "sensor array") to transmit signals corresponding to a moving vehicle and a control system for processing the signals and triggering the camera. The signals preferably include "position signals" from which a transit time can be calculated, and "presence signals," from which presence information can be obtained, particularly the location of the rear of the vehicle or the location of the rear wheels of the vehicle. A trigger time for taking a picture of the vehicle may be calculated from the transit time. A method of the invention includes the step of transmitting signals to a control system in response to the vehicle passing over a first traffic sensor and corresponding to the speed of the vehicle. The method may also include the steps of transmitting presence signals to the control system, preferably corresponding to the presence of the vehicle in a known presence zone outside the intersection, and photographing the vehicle in response to those signals. The system preferably uses a first set of signals (reflecting vehicle speed or transit time) and a second set of signals (reflecting the presence of the vehicle) to determine when to trigger the photograph of the vehicle in the intersection zone.
Owner:TRANSCORE

Ultrasonic gas flowmeter as well as device to measure exhaust flows of internal combustion engines and method to determine flow of gases

An ultrasonic gas flowmeter includes a measuring pipe with flowing gas, transmitting and receiving sound transducers, transmission and reception electronics, and evaluation electronics. The sound transducers (7, 8, 9, 10) are designed as capacitive electro-acoustic ultrasonic transducers to construct a flowmeter with improved capacity, especially in view of temperature stability and the reduction and consideration of a temperature profile. Devices (5, 6) are provided to level the gas temperature profile and to minimize the influence of the temperature profile on the flow measurement. A more accurate and dependable detection of the volume flow or the mass flow of gases is to be achieved, especially in highly dynamic flows, for the method of determining the flow of gases whereby the mean flow velocity is determined and the flowing gas quantity is determined with highly synchronized resolution from the two transit times of two acoustic signals. In addition, an assessed value is computed (35) for the flow after the determination of the transit times and the assessed value is corrected at least by means of a characteristic temperature of the gas and the temperature of the wall of the measuring pipe (36).
Owner:AVL LIST GMBH

Method and apparatus for determining the flow parameters of a streaming medium

According to the method longitudinal waves are generated in a transducer used only as a transmitter connected from outside to a conduit. These waves are transmitted along two diagonal paths through the streaming medium in an upstream and a downstream direction, and received by two transducers used only as receivers which are located in a diagonal upstream and downstream position and on an opposite side relative to the transducer used as a transmitter, also connected to the conduit. A transit time value of the waves between the transducer used as a transmitter and each of the transducers used as receivers is determined. A difference value on the basis of the determined transit time values is generated and the flow parameters are determined on the basis of said difference value. This measuring method is highly independent of the propagation velocity of the wave in the medium streaming in the conduit therefore also independent of the temperature and humidity of a gaseous medium. An apparatus and a conduit for use in the apparatus for performing the method is also suggested. The conduit used in the apparatus comprises a first location for receiving a transmitter in a middle region of the measuring area and two second locations for receiving receivers in a border region of the measuring area opposite to the first location. The wall of the conduit is dimensioned so that the longitudinal waves can pass through it with minimal loss and maximum efficiency. The inner wall of the conduit forms a uniform and continuos surface for the transmission of the longitudinal waves between the transmitter and the receivers and for blocking the passage of any organic or inorganic material. In medical applications the apparatus and its housing is configured to receive, hold and release a sterile conduit.
Owner:USCOM
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products