Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

767 results about "Discharge measurements" patented technology

Discharge is the volume of water moving down a stream or river per unit of time, commonly expressed in cubic feet per second or gallons per day. In general, river discharge is computed by multiplying the area of water in a channel cross section by the average velocity of the water in that cross section:

Method for wide range gas flow system with real time flow measurement and correction

A gas delivery system accurately measures and optionally regulates mass flow rate in real time. A fluid conduit connects an inlet valve, calibration volume, flow restrictor, and outlet valve in series. Pressure and temperature sensors are coupled to the calibration volume. One or more pressure sensors may be attached across the flow restrictor. Alternatively, an absolute pressure sensor may be attached upstream of the flow restrictor. One embodiment of differential pressure sensors comprises a floating reference differential pressure sensor, including a first transducer attached to the fluid conduit upstream of the flow restrictor and a second transducer attached to the conduit downstream of the flow restrictor. In this embodiment, each transducer receives a reference pressure from a reference source, and optionally, after the calibration volume is charged, the floating reference differential pressure transducers are calibrated. When gas flow is initiated, differential and/or absolute pressure measurements are repeatedly taken, and a measured mass flow rate calculated thereon. Gas flow is adjusted until the measured mass flow rate reaches a target mass flow. Using the temperature/pressure sensors at the calibration volume, repeated calculations of actual flow rate are made to uncover any discrepancy between actual and measured mass flow rates. Whenever a discrepancy is found, the manner of calculating measured mass flow is conditioned to account for the discrepancy; thus, the measured mass flow rate more accurately represents the actual mass flow rate thereby providing an actual mass flow rate more accurately achieving the target mass flow rate.
Owner:CYBER INSTR TECH LLC AN ARIZONA LIMITED LIABILITY +1

Flow rate measurement for industrial sensing applications using unsteady pressures

Flow rate measurement system includes two measurement regions 14,16 located an average axial distance ΔX apart along the pipe 12, the first measurement region 14 having two unsteady pressure sensors 18,20, located a distance X1 apart, and the second measurement region 16, having two other unsteady pressure sensors 22,24, located a distance X2 apart, each capable of measuring the unsteady pressure in the pipe 12. Signals from each pair of pressure sensors 18,20 and 22,24 are differenced by summers 44,54, respectively, to form spatial wavelength filters 33,35, respectively. Each spatial filter 33,35 filters out acoustic pressure disturbances Pacoustic and other long wavelength pressure disturbances in the pipe 12 and passes short-wavelength low-frequency vortical pressure disturbances Pvortical associated with the vortical flow field 15. The spatial filters 33,35 provide signals Pas1,Pas2 to band pass filters 46,56 that filter out high frequency signals. The Pvortical -dominated filtered signals Pasf1,Pasf2 from the two regions 14,16 are cross-correlated by Cross-Correlation Logic 50 to determine a time delay τ between the two sensing locations 14,16 which is divided into the distance ΔX to obtain a convection velocity Uc(t) that is related to an average flow rate of the fluid (i.e., one or more liquids and / or gases) flowing in the pipe 12. The invention may also be configured to detect the velocity of any desired inhomogeneous pressure field in the flow. The invention may also be combined with an instrument, an opto-electronic converter and a controller in an industrial process control system.
Owner:EXPRO METERS

Flow rate measurement for industrial sensing applications using unsteady pressures

Flow rate measurement system includes two measurement regions 14,16 located an average axial distance .DELTA.X apart along the pipe 12, the first measurement region 14 having two unsteady pressure sensors 18,20, located a distance X.sub.1 apart, and the second measurement region 16, having two other unsteady pressure sensors 22,24, located a distance X.sub.2 apart, each capable of measuring the unsteady pressure in the pipe 12. Signals from each pair of pressure sensors 18,20 and 22,24 are differenced by summers 44,54, respectively, to form spatial wavelength filters 33,35, respectively. Each spatial filter 33,35 filters out acoustic pressure disturbances P.sub.acoustic and other long wavelength pressure disturbances in the pipe 12 and passes short-wavelength low-frequency vortical pressure disturbances P.sub.vortical associated with the vortical flow field 15. The spatial filters 33,35 provide signals P.sub.as1,P.sub.as2 to band pass filters 46,56 that filter out high frequency signals. The P.sub.vortical -dominated filtered signals P.sub.asf1,P.sub.asf2 from the two regions 14,16 are cross-correlated by Cross-Correlation Logic 50 to determine a time delay .tau. between the two sensing locations 14,16 which is divided into the distance .DELTA.X to obtain a convection velocity U.sub.c(t) that is related to an average flow rate of the fluid (i.e., one or more liquids and/or gases) flowing in the pipe 12. The invention may also be configured to detect the velocity of any desired inhomogeneous pressure field in the flow. The invention may also be combined with an instrument, an opto-electronic converter and a controller in an industrial process control system.
Owner:EXPRO METERS

Fuel Consumption Evaluation System

The present invention is intended to provide a fuel consumption evaluation system which obtains quantitative data to determine whether actual driving has consumed fuel more efficiently or less efficiently than average driving and gives the driver and / or manager concrete advice for fuel-efficient driving based on the obtained data, and also provide a fuel consumption evaluation system which decides, based on obtained fuel efficiency data, whether driving is more fuel-efficient than average driving and sets a target and gives the driver and / or manager concrete advice for fuel-efficient driving based on the obtained data in consideration of change in vehicle total mass without any influence of slopes and traffic flows and particularly encourages and instructs, in real time, the driver to do fuel-efficient driving. The system comprises: engine speed measuring means (2) which measures engine speed of a truck (1); accelerator opening degree measuring means (3) which measures an accelerator opening degree (α); vehicle velocity measuring means (4) which measures vehicle velocity (V); fuel flow rate measuring means (5) which measures a fuel flow rate (Fw); and control means (10) which evaluates fuel consumption of the truck from measured engine speed (N), accelerator opening degree (α), vehicle velocity (V) and fuel flow rate (Fw). The control means, which has storage means (11), divides a run from start to stop into plural phases (start acceleration phase E1, steady running phase E2, deceleration phase E3, idling phase E4), sets fuel consumption-related parameters (“start acceleration shift-up engine speed N1 and start acceleration accelerator opening degree α1” P1, “steady running engine speed N2” P2, “deceleration coasting ratio” P3 and “idling velocity V4” P4) for each of the plural phases (E1-E4, determines fuel consumption (Q) for each of the plural phases (E1-E4) based on correlation (correlation line F in FIG. 5) between the parameters (P1, P2, P4) and fuel consumption (fuel consumption per unit distance traveled q), and makes an evaluation based on the determined fuel consumption (Q).
Owner:VOLVO LASTVAGNAR AB

Ultrasonic gas flowmeter as well as device to measure exhaust flows of internal combustion engines and method to determine flow of gases

An ultrasonic gas flowmeter includes a measuring pipe with flowing gas, transmitting and receiving sound transducers, transmission and reception electronics, and evaluation electronics. The sound transducers (7, 8, 9, 10) are designed as capacitive electro-acoustic ultrasonic transducers to construct a flowmeter with improved capacity, especially in view of temperature stability and the reduction and consideration of a temperature profile. Devices (5, 6) are provided to level the gas temperature profile and to minimize the influence of the temperature profile on the flow measurement. A more accurate and dependable detection of the volume flow or the mass flow of gases is to be achieved, especially in highly dynamic flows, for the method of determining the flow of gases whereby the mean flow velocity is determined and the flowing gas quantity is determined with highly synchronized resolution from the two transit times of two acoustic signals. In addition, an assessed value is computed (35) for the flow after the determination of the transit times and the assessed value is corrected at least by means of a characteristic temperature of the gas and the temperature of the wall of the measuring pipe (36).
Owner:AVL LIST GMBH

Flow rate measurement for industrial sensing applications using unsteady pressures

Flow rate measurement system includes two measurement regions 14,16 located an average axial distance ΔX apart along the pipe 12, the first measurement region 14 having two unsteady pressure sensors 18,20, located a distance X1 apart, and the second measurement region 16, having two other unsteady pressure sensors 22,24, located a distance X2 apart, each capable of measuring the unsteady pressure in the pipe 12. Signals from each pair of pressure sensors 18,20 and 22,24 are differenced by summers 44,54, respectively, to form spatial wavelength filters 33,35, respectively. Each spatial filter 33,35filters out acoustic pressure disturbances Pacoustic and other long wavelength pressure disturbances in the pipe 12 and passes short-wavelength low-frequency vortical pressure disturbances Pvortical associated with the vortical flow field 15. The spatial filters 33,35 provide signals Pas1,Pas2 to band pass filters 46,56 that filter out high frequency signals. The Pvortical-dominated filtered signals Pasf1,Pasf2 from the two regions 14,16 are cross-correlated by Cross-Correlation Logic 50 to determine a time delay τ between the two sensing locations 14,16 which is divided into the distance ΔX to obtain a convection velocity Uc(t) that is related to an average flow rate of the fluid (i.e., one or more liquids and/or gases) flowing in the pipe 12. The invention may also be configured to detect the velocity of any desired inhomogeneous pressure field in the flow. The invention may also be combined with an instrument, an opto-electronic converter and a controller in an industrial process control system.
Owner:EXPRO METERS

Fuel consumption evaluation system

The present invention is intended to provide a fuel consumption evaluation system which obtains quantitative data to determine whether actual driving has consumed fuel more efficiently or less efficiently than average driving and gives the driver and / or manager concrete advice for fuel-efficient driving based on the obtained data, and also provide a fuel consumption evaluation system which decides, based on obtained fuel efficiency data, whether driving is more fuel-efficient than average driving and sets a target and gives the driver and / or manager concrete advice for fuel-efficient driving based on the obtained data in consideration of change in vehicle total mass without any influence of slopes and traffic flows and particularly encourages and instructs, in real time, the driver to do fuel-efficient driving. The system comprises: engine speed measuring means (2) which measures engine speed of a truck (1); accelerator opening degree measuring means (3) which measures an accelerator opening degree (α); vehicle velocity measuring means (4) which measures vehicle velocity (V); fuel flow rate measuring means (5) which measures a fuel flow rate (Fw); and control means (10) which evaluates fuel consumption of the truck from measured engine speed (N), accelerator opening degree (α), vehicle velocity (V) and fuel flow rate (Fw).
Owner:VOLVO LASTVAGNAR AB

NEXT-GENERATION BANDWIDTH MANAGEMENT CONTROL SYSTEMS FOR MULTIPLE-SERVICE CALLS, SESSIONS, PACKET-LEVEL PROCESSES, AND QoS PARAMETERS - PART 1: STRUCTURAL AND FUNCTIONAL ARCHITECTURES

System and method for addressing immense, long-standing problem of bandwidth management, for example, in enterprise networks, VPNs, real-time and stored video services, mobile applications, wireless networks, and cloud computing applications. Described features include an automatic closed-loop control system infrastructure encompassing multiple time-scales and performing control actions optimized to the extent possible with respect to administrator-provided performance metrics. One aspect utilizes available or innovatively accessible means of session and QoS control (settings in configuration files, gateway APIs, QoS parameters, application bit-rate settings, etc.) within the context of practical multiple-vendor products in evolving multiple-service networks. Another aspect utilizes available or innovatively accessible means of session and QoS observations (values in reporting log files, gateway APIs, network monitoring, etc.) within the context of practical multiple-vendor products in evolving multiple-service networks. Traffic-measurement controlled adaptive reservations for distributed myopic single-service gatekeepers effectively shapes the permitted state-space boundary over a range of arbitrary curvatures.
Owner:AVISTAR COMM

Appliance management system and gas supply system

It is an object to acquire in real time information about the type of an appliance used at home, a cumulative time elapsed from installation of the appliance, and the like; preliminarily acquire inspection timing; and prevent occurrence of a problem in the appliance. There are provided an appliance determination section 13 that determines a gas appliance to be used from the quantity of momentary flow determined from a measured value of a flow measurement section 11 by predetermined arithmetic processing; an appliance setting section 43 capable of arbitrarily inputting appliance information about a monitoring target appliance; an appliance registration section 14 that registers a monitoring target appliance in accordance with a result of determination made by the appliance determination section 13 and an result of input performed with the appliance setting section 43; a timer section 16 that integrates and stores a time elapsed from a point in time when an appliance is registered as a monitoring target appliance in an appliance registration section 14 on a registered individual appliance basis; a communication section 41 that is connected to a monitoring center 40 with a communication line and that performs communication processing of flow information, appliance information, and the like; and a control section 15 that compares an integrated time of the timer section 16 with a preset monitoring time and outputs a signal for sending a report to a gas utility company or a user when the integrated time has exceeded the monitoring time.
Owner:PANASONIC CORP

Experimental apparatus for acquiring large-area uniform discharge plasmas

The invention relates to an experimental apparatus for acquiring large-area uniform discharge plasmas, which belongs to the technical field of plasmas. The experimental apparatus comprises a bipolar nanosecond pulse power supply, a reactor, multi-needle-to-plate electrodes, a gas distribution system, a spectral measurement system and a discharge measurement system, wherein the bipolar nanosecond pulse power supply drives dielectric barrier discharge of air and other gas mixtures among the multi-needle-to-plate electrodes in the reactor, and the gas mixtures are input to the reactor through the gas distribution system; the spectral measurement system collects photonic information of plasma discharge in real time and inputs the photonic information to a computer for spectral analysis; and the discharge measurement system collects discharge voltage and current of the high-voltage nanosecond pulse power supply in real time, and the discharge voltage and current are displayed through a digital oscilloscope. By virtue of the bipolar nanosecond narrow-pulse power supply, the large-area discharge plasmas are generated without a magnetic field; and the generated plasmas are uniform, diffusive, high in electron density, high in energy utilization ratio, low in energy consumption and easy to control in a discharge process.
Owner:DALIAN UNIV OF TECH

Flow test system suitable for supersonic/hypersonic channel and test method

The invention discloses a flow test system suitable for supersonic/hypersonic channel, which mainly comprises a Venturi tube, a throttling module and a rectification module. By adjusting the outlet area of the throttling module, a shock wave structure inside the pipeline is formed; the shock wave and the designed diffuser are used to decelerate the supersonic/ hypersonicin flow fully to a subsonic speed so as to satisfy the requirement of the Venturi tube to the inlet speed and Reynolds number. The system has the advantages of simple structure, small size, rapid response speed and high measurement precision; the throttling module adjusts the throttling degree according to pipe flow speed; the suitable Mach number scope is side; the demanded pressure measuring points are few; additional obstruction to the experiment channel is avoided compared to traditional flow test methods like * shaped rake; the throttling characteristic experiment of an air intake duct can be carried out at the same time; test cost is greatly saved; air-flow non-uniformity inside the channel is not sensitive; the system is particularly suitable for measuring flow of complex inner flow apparatuses like air intake ducts and diffusers whose inflow are supersonic/hypersonic.
Owner:NANJING UNIV OF AERONAUTICS & ASTRONAUTICS +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products