Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

5186results about "Liquid dispensing" patented technology

Packaging container for discharge of plurality of contents, packaging product including the packaging container and process for producing the packaging product

Double aerosol container (190a) comprising outer vessel (11), flexible inside bag (12) accommodated in the outer vessel and valve (13). The inside bag (12) is divided by means of middle constricted part (71) into upper and lower storage parts (27, 26), and the upper and lower storage parts are shut off from each other by means of partition member (72) at the constricted part. The valve (13) is fitted with a communication hole for communicating the upper storage part (27) with the inside of the inside bag (12) and flitted with dip tube (28) communicating with the lower storage part (26). The upper and lower storage parts (27, 26) are loaded with first contents (A) and second contents (B), which are different from each other, thereby providing an inside bag type double aerosol product. Two-pack type reactive preparations can be employed as a combination of contents of the double aerosol product The double aerosol product is suitable for use in, for example, a hair dye, an enzyme hair dye, a hair setting agent, an antiphlogistic analgesic, a glow inhibitor, a coolant, a pack agent, a cleansing agent, a shaving foam, a humectant, an antiperspirant, a vitamin or a skin softener.

Dry powder inhalers, related blister devices, and associated methods of dispensing dry powder substances and fabricating blister packages

The present invention includes dry powder inhalers and associated multi-dose dry powder packages for holding inhalant formulated dry powder substances and associated fabrication and dispensing methods. The multi-dose package can include a platform body comprising at least one thin piezoelectric polymer material layer defining at least a portion of a plurality of spatially separated discrete elongate dry powder channels having an associated length, width and height; and a metallic material attached to selected portions of the piezoelectric polymer material including each of the regions corresponding to the elongate dry powder channels to, in operation, define active energy releasing vibratory channels. In operation, the elongate channels can be selectively individually activated to vibrate upon exposure to an electrical input.
The dry powder inhaler includes an elongate body having opposing first and second outer primary surfaces with a cavity therebetween and having opposing top and bottom end portions and a multi-dose sealed blister package holding a plurality of discrete meted doses of a dry powder inhalable product located in the cavity of the elongate body. The inhaler also includes an inhalation port formed in the bottom end portion of the elongate body, the inhalation port configured to be in fluid communication with at least one of the discrete meted doses during use and a cover member that is pivotably attached to the elongate body so that it remains attached to the body during normal operational periods of use and moves to a first closed position to overlie the inhalation port at the bottom end portion of the body during periods of non-use and moves to a second open position away from the inhalation port during periods of use to allow a user to access the inhalation port.

Methods and apparatus for unattended pickups and deliveries

A secure pickup and delivery container includes a lockable door, a control unit, an access element, and an anchoring element, according to one embodiment. The control unit includes a processing element and a memory that can be programmed either on-site or remotely with access privilege information such as identity (e.g. of container, delivery person, etc.), location, date, time, frequency of access, and/or package-specific information. In one embodiment, access privilege information is programmed when an intended recipient of a delivery consummates a point of sale transaction, for example over the Internet or telephone. The access element can be a keypad, a biometric scanner, a card reader, a bar-code reader, and/or a wireless control element to read a programmable token such as a smart card. Delivery personnel can enter access request information into the access element, and if it favorably compares with the access privilege information, the control unit unlocks the door. Notification can be concurrently made via wireline or wireless communications to the intended recipient, who may be situated remote from the secure container. The recipient can optionally return a delivery acknowledgment to the delivery personnel. Details of the delivery transaction can also be recorded electronically on the delivery personnel's token, within the container, or at a remote location.

Paint spraying equipment and method of cleaning the same

In a method of cleaning a paint application system when switching between two different types or colors of paint, at least a predominant portion of the first paint (35) remaining in a paint line (3) is caused to flow back into its paint supply container (5). Then the entire paint line is flushed out using a flushing medium, before supplying the second paint through the paint line. In this manner, the paint remaining in the painting system at the end of a painting cycle is not wasted, but rather is saved to later be reused. A paint application apparatus includes a paint supply switching device (4), at least two paint supply containers (5 to 8), a paint spray nozzle (2), and a paint line (3) connecting the color switching device (4) to the spray nozzle (2). Two receiver stations (28) and (31) are interposed in the paint line (3), and a shuttle element in the form of a pipe cleaner swab (29) is arranged in the paint line (3) so as to be able to shuttle back and forth between the two receiver stations. A pressure medium or flushing medium can be introduced into the paint line (3) between the first receiver station (28) and the spraying nozzle (2), so as to push the pipe cleaner swab (29) through the paint line (3) to the second receiver station (31). Thereby, the paint remaining in the paint line (3) is pushed back into the paint supply container.

Insulated shipping container and method of making the same

Insulated shipping container and method of making the same. In a preferred embodiment, the insulated shipping container comprises an outer box, an insulated insert, an inner box and a closure member. The outer box, which is preferably made of corrugated fiberboard, comprises a rectangular prismatic cavity bounded by a plurality of rectangular side walls, a closed bottom end, and top closure flaps. The insulated insert is snugly, but removably, disposed within the outer box and is shaped to define a rectangular prismatic cavity bounded by a bottom wall and a plurality of rectangular side walls, the insulated insert having an open top end. The insulated insert is made of a foamed polyurethane body to which on all sides, except its bottom, a thin, flexible, unfoamed polymer bag is integrally bonded. The bag is a unitary structure having a generally uniform rectangular shape, the bag being formed by sealing shut one end of a tubular member with a transverse seam and forming longitudinal creases extending from opposite ends of the seam. The inner box, which is snugly, but removably, disposed within the insert, is preferably made of corrugated fiberboard and is shaped to include a rectangular prismatic cavity bounded by a plurality of rectangular side walls and a closed bottom end, the top end thereof being open. The closure member is a thick piece of foam material snugly, but removably, disposed in the open end of the inner box.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products