Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

320results about How to "Great degree" patented technology

Flexible visually directed medical intubation instrument and method

A flexible medical intubation instrument provided for placement into an animal or human patient comprises a catheter with at least a pair of longitudinally extending lumens or channels including a sensor and/or actuator channel and a working channel. In the sensor/actuator channel is provided a fixed or slideably removable sensor cable having a sensor for sensing a characteristic or condition including any of the following: a visual sensor for optical viewing, a chemical sensor, a pH sensor, a pressure sensor, an infection sensor, an audio sensor, or a temperature sensor. The sensors are coupled by the sensor/actuator cable through light transmission, electric current, or radio transmission to a viewing instrument or other output device such as a meter or video screen for displaying the condition that is sensed within the body of the patient while the flexibility of the composite structure comprising the catheter and cable enable the entire instrument to flex laterally as it moves through curved passages or around obstructions during insertion or removal. While making observations through the sensor channel, the working channel simultaneously functions as a drain or an irrigation duct, a feeding tube, or to provide a passage for the insertion of one or a succession of surgical devices such that the catheter serves as a protective artificial tract or liner as surgical devices are inserted and removed through it in succession so as to minimize tissue trauma, infection, and pain experienced by the patient. The instrument can be used in urology, as well as a visually directed nasogastric tube, as a visually directed external gastrostomy tube, or as a visually directed internal gastric tube or percutaneous endoscopic gastrostomy tube and in other applications.
Owner:PERCUVISION

Quantum cryptography

A method of establishing a shared secret random cryptographic key between a sender and a recipient using a quantum communications channel is described. The method comprises: generating a plurality of random quantum states of a quantum entity, each random state being defined by a randomly selected one of a first plurality of bases in Hilbert space, transmitting the plurality of random quantum states of the quantum entity via the quantum channel to a recipient, measuring the quantum state of each of the received quantum states of the quantum entity with respect to a randomly selected one of a second plurality of bases in Hilbert space, transmitting to the recipient composition information describing a subset of the plurality of random quantum states, analysing the received composition information and the measured quantum states corresponding to the subset to derive a first statistical distribution describing the subset of transmitted quantum states and a second statistical distribution describing the corresponding measured quantum states, establishing the level of confidence in the validity of the plurality of transmitted random quantum states by verifying that the first and second statistical distributions are sufficiently similar, deriving a first binary sting and a second binary string, correlated to the first binary string, respectively from the transmitted and received plurality of quantum states not in the subset, and carrying out a reconciliation of the second binary string to the first binary string by using error correction techniques to establish the shared secret random cryptographic key from the first and second binary strings.
Owner:HEWLETT-PACKARD ENTERPRISE DEV LP +1

Ultraviolet treatment for aqueous liquids

A process for treating an aqueous liquid. The process includes: passing the liquid by force of gravity through a treatment area, the liquid having an upper surface exposed to ambient pressure; disrupting the flow of the liquid as it passes through the treatment area, and exposing the upper surface of the liquid as the flow is disrupted to UV light. Disrupting the flow includes directing lower portions of the liquid toward the surface of the liquid to bring such portions into contact with UV light. A process for treating an aqueous liquid in which the treatment process is monitored. This process includes passing the liquid through a treatment area to bring the liquid into contact with reflective walls submerged below an upper surface of the liquid, and exposing the upper surface of the liquid to light emitted from a UV light source such that UV light penetrates the liquid to strike the submerged reflective surfaces and to be reflected therefrom to emerge through the upper surface of the liquid. The process also involves determining the intensity of the UV light emitted from the light source, determining the intensity of UV light received by a UV light sensor trained to receive emergent light and determining whether the treatment has a predetermined effectiveness based on the intensity of the UV light emitted from the light source and the intensity of the UV light received by the sensor. Apparatuses for carrying out processes of the invention are also described.
Owner:UV PURE TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products