Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

719 results about "Avidity" patented technology

In biochemistry, avidity refers to the accumulated strength of multiple affinities of individual non-covalent binding interactions, such as between a protein receptor and its ligand, and is commonly referred to as functional affinity. As such, avidity is distinct from affinity, which describes the strength of a single interaction. However, because individual binding events increase the likelihood of other interactions to occur (i.e. increase the local concentration of each binding partner in proximity to the binding site), avidity should not be thought of as the mere sum of its constituent affinities but as the combined effect of all affinities participating in the biomolecular interaction. A particular important aspect relates to the phenomenon of 'avidity entropy'. Biomolecules often form heterogenous complexes or homogeneous oligomers and multimers or polymers. If clustered proteins form an organized matrix, such as the clathrin-coat, the interaction is described as a matricity.

Antigen binding molecules with increased Fc receptor binding affinity and effector function

The present invention relates to antigen binding molecules (ABMs). In particular embodiments, the present invention relates to recombinant monoclonal antibodies, including chimeric, primatized or humanized antibodies specific for human CD20. In addition, the present invention relates to nucleic acid molecules encoding such ABMs, and vectors and host cells comprising such nucleic acid molecules. The invention further relates to methods for producing the ABMs of the invention, and to methods of using these ABMs in treatment of disease. In addition, the present invention relates to ABMs with modified glycosylation having improved therapeutic properties, including antibodies with increased Fc receptor binding and increased effector function.
Owner:ROCHE GLYCART AG

Oligonucleotide analogues

The present invention relates to novel bicyclic and tricyclic nucleoside and nucleotide analogues as well as to oligonucleotides comprising such elements. The nucleotide analogues, LNAs (Locked Nucleoside Analogues), are able to provide valuable improvements to oligonucleotides with respect to affinity and specificity towards complementary RNA and DNA oligomers. The novel type of LNA modified oligonucleotides, as well as the LNAs as such, are useful in a wide range of diagnostic applications as well as therapeutic applications. Among these can be mentioned antisense applications, PCR applications, strand displacement oligomers, as substrates for nucleic acid polymerases, as nucleotide based drugs, etc. The present invention also relates to such applications.
Owner:QIAGEN GMBH

Gapped oligonucleotides

Oligonucleotides and other macromolecules are provided which have increased nuclease resistance, substituent groups for increasing binding affinity to complementary strand, and subsequences of 2′-deoxy-erythro-pentofuranosyl nucleotides that activate RNase H. Such oligonucleotides and macromolecules are useful for diagnostics and other research purposes, for modulating the expression of a protein in organisms, and for the diagnosis, detection and treatment of other conditions susceptible to oligonucleotide therapeutics.
Owner:IONIS PHARMA INC

Gapped 2' modified oligonucleotides

Oligonucleotides and other macromolecules are provided that have increased nuclease resistance, substituent groups for increasing binding affinity to complementary strand, and sub-sequences of 2'-deoxy-erythro-pentofuranosyl nucleotides that activate RNase H enzyme. Such oligonucleotides and macromolecules are useful for diagnostics and other research purposes, for modulating protein in organisms, and for the diagnosis, detection and treatment of other conditions susceptible to antisense therapeutics.
Owner:IONIS PHARMA INC

Increasing antibody affinity by altering glycosylation of immunoglobulin variable region

The present invention provides methods for producing mutationally-altered immunoglobulins and compositions containing such mutationally-altered immunoglobulins, wherein the mutationally-altered immunoglobulins have at least one mutation that alters the pattern of glycosylation in a variable region and thereby modifies the affinity of the immunoglobulin for a preselected antigen. The methods and compositions of the invention provide immunoglobulins that possess increased affinity for antigen. Such glycosylation-altered immunoglobulins are suitable for diagnostic and therapeutic applications.
Owner:FACET BIOTECH CORP

Pseudo-antibody constructs

This invention relates to novel pharmaceutically useful compositions that bind to a biological molecule, having improved circulatory half-life, increased avidity, increased affinity, or multifunctionality, and methods of use thereof. The present invention provides a pseudo-antibody comprising an organic moiety covalenty coupled to at least two target-binding moieties, wherein the target-binding moieties are selected from the group consisting of a protein, a peptide, a peptidomimetic, and a non-peptide molecule that binds to a specific targeted biological molecule. The pseudo-antibody of the present invention may affect a specific ligand in vitro, in situ and / or in vivo. The pseudo-antibodies of the present invention can be used to measure or effect in an cell, tissue, organ or animal (including humans), to diagnose, monitor, modulate, treat, alleviate, help prevent the incidence of, or reduce the symptoms of, at least one condition.
Owner:CENTOCOR

Mutated Tn5 transposase proteins and the use thereof

Transposase proteins that are modified relative to and have higher transposase activities than the wild-type Tn5 transposase are disclosed. A transposase protein of the present invention differs from the wild-type Tn5 transposase at amino acid position 41, 42, 450, or 454 and has greater avidity than the wild-type Tn5 transposase for at least one of a Tn5 outside end sequence as defined by SEQ ID NO:3, a Tn5 inside end sequence as defined by SEQ ID NO:4, and a modified Tn5 outside end sequence as defined by SEQ ID NO:5. Also disclosed are various systems and methods of using the transposase proteins of the present invention for in vitro or in vivo transposition.
Owner:WISCONSIN ALUMNI RES FOUND

Systematic evolution of ligands by exponential enrichment: photoselection of nucleic acid ligands and solution selex

A method for identifying nucleic acid ligands to target molecules using the SELEX procedure wherein the candidate nucleic acids contain photoreactive groups and nucleic acid ligands identified thereby are claimed. The complexes of increased affinity nucleic acids and target molecules formed in the procedure are crosslinked by irradiation to facilitate separation from unbound nucleic acids. In other methods partitioning of high and low affinity nucleic acids is facilitated by primer extension steps as shown in the figure in which chain termination nucleotides, digestion resistant nucleotides or nucleotides that allow retention of the cDNA product on an affinity matrix are differentially incorporated into the cDNA products of either the high or low affinity nucleic acids and the cDNA products are treated accordingly to amplification, enzymatic or chemical digestion or by contact with an affinity matrix.
Owner:SOMALOGIC INC

Oligoribonucleotides and ribonucleases for cleaving RNA

Oligomeric compounds including oligoribonucleotides and oligoribonucleosides are provided that have subsequences of 2′-pentoribofuranosyl nucleosides that activate dsRNase. The oligoribonucleotides and oligoribonucleosides can include substituent groups for increasing binding affinity to complementary nucleic acid strand as well as substituent groups for increasing nuclease resistance. The oligomeric compounds are useful for diagnostics and other research purposes, for modulating the expression of a protein in organisms, and for the diagnosis, detection and treatment of other conditions susceptible to oligonucleotide therapeutics. Also included in the invention are mammalian ribonucleases, i.e., enzymes that degrade RNA, and substrates for such ribonucleases. Such a ribonuclease is referred to herein as a dsRNase, wherein “ds” indicates the RNase's specificity for certain double-stranded RNA substrates. The artificial substrates for the dsRNases described herein are useful in preparing affinity matrices for purifying mammalian ribonuclease as well as non-degradative RNA-binding proteins.
Owner:IONIS PHARMA INC

Oligoribonucleotides and ribonucleases for cleaving RNA

Oligomeric compounds including oligoribonucleotides and oligoribonucleosides are provided that have subsequences of 2′-pentoribofuranosyl nucleosides that activate dsRNase. The oligoribonucleotides and oligoribonucleosides can include substituent groups for increasing binding affinity to complementary nucleic acid strand as well as substituent groups for increasing nuclease resistance. The oligomeric compounds are useful for diagnostics and other research purposes, for modulating the expression of a protein in organisms, and for the diagnosis, detection and treatment of other conditions susceptible to oligonucleotide therapeutics. Also included in the invention are mammalian ribonucleases, i.e., enzymes that degrade RNA, and substrates for such ribonucleases. Such a ribonuclease is referred to herein as a dsRNase, wherein “ds” indicates the RNase's specificity for certain double-stranded RNA substrates. The artificial substrates for the dsRNases described herein are useful in preparing affinity matrices for purifying mammalian ribonuclease as well as non-degradative RNA-binding proteins.
Owner:IONIS PHARMA INC

Alteration of FcRn binding affinities or serum half-lives of antibodies by mutagenesis

The present invention provides for a modified antibody of class IgG, in which at least one amino acid from the heavy chain constant region selected from the group consisting of amino acid residues 250, 314, and 428 is substituted with another amino acid which is different from that present in the unmodified antibody, thereby altering the binding affinity for FcRn and / or the serum half-life in comparison to the unmodified antibody.
Owner:ABBOTT BIOTHERAPEUTICS CORP

Structure-based selection and affinity maturation of antibody library

The present invention provides a structure-based methodology for efficiently generating and screening protein libraries for optimized proteins with desirable biological functions, such as antibodies with high binding affinity and low immunogenicity in humans. In one embodiment, a method is provided for constructing a library of antibody sequences based on a three dimensional structure of a lead antibody. The method comprises: providing an amino acid sequence of the variable region of the heavy chain (VH) or light chain (VL) of a lead antibody, the lead antibody having a known three dimensional structure which is defined as a lead structural template; identifying the amino acid sequences in the CDRs of the lead antibody; selecting one of the CDRs in the VH or VL region of the lead antibody; providing an amino acid sequence that comprises at least 3 consecutive amino acid residues in the selected CDR, the selected amino acid sequence being a lead sequence; comparing the lead sequence profile with a plurality of tester protein sequences; selecting from the plurality of tester protein sequences at least two peptide segments that have at least 10% sequence identity with lead sequence, the selected peptide segments forming a hit library; determining if a member of the hit library is structurally compatible with the lead structural template using a scoring function; and selecting the members of the hit library that score equal to or better than or equal to the lead sequence. The selected members of the hit library can be expressed in vitro or in vivo to produce a library of recombinant antibodies that can be screened for novel or improved function(s) over the lead antibody.
Owner:ABMAXIS

Oligoribonucleotides and ribonucleases for cleaving RNA

Oligomeric compounds including oligoribonucleotides and oligoribonucleosides are provided that have subsequences of 2′-pentoribofuranosyl nucleosides that activate dsRNase. The oligoribonucleotides and oligoribonucleosides can include substituent groups for increasing binding affinity to complementary nucleic acid strand as well as substituent groups for increasing nuclease resistance. The oligomeric compounds are useful for diagnostics and other research purposes, for modulating the expression of a protein in organisms, and for the diagnosis, detection and treatment of other conditions susceptible to oligonucleotide therapeutics. Also included in the invention are mammalian ribonucleases, i.e., enzymes that degrade RNA, and substrates for such ribonucleases. Such a ribonuclease is referred to herein as a dsRNase, wherein “ds” indicates the RNase's specificity for certain double-stranded RNA substrates. The artificial substrates for the dsRNases described herein are useful in preparing affinity matrices for purifying mammalian ribonuclease as well as non-degradative RNA-binding proteins.
Owner:IONIS PHARMA INC

Tn5 transposase mutants and the use thereof

Tn5 transposase (Tnp) mutants that have higher transposase activities than the wild-type Tnp are disclosed. The Tn5 Tnp mutants differ from the wild-type Tnp at amino acid positions 54, 242, and 372 and have greater avidity than the wild-type Tnp for at least one of a wild-type Tn5 outside end sequence as defined by SEQ ID NO:3 and a modified Tn5 outside end sequence as defined by SEQ ID NO:5. Also disclosed are various systems and methods of using the Tnp mutants for in vitro or in vivo transposition.
Owner:WISCONSIN ALUMNI RES FOUND

Reagents, Methods and Systems for Selecting a Cytotoxic Antibody or Variant Thereof

InactiveUS20080286819A1Enhanced effector functionFunction increaseAntipyreticDigestive systemCytotoxic antibodyInhibitory receptors
The present invention provides reagents, methods and systems for predicting the cytotoxic activity of an antibody or variant thereof comprising: determining a binding affinity of the antibody or variant thereof to a Fc activating receptor; determining a binding affinity of the antibody or variant thereof to a Fc inhibitory receptor, and calculating the ratio of said activating binding affinity to said inhibitory binding affinity (A / I ratio), wherein the magnitude of said ratio is an indication of the cytotoxic activity of the antibody or variant thereof. The present invention also provides purified modified antibodies having altered A / I ratios as compared to the unmodified antibodies.
Owner:THE ROCKEFELLER UNIV

Process for preparing major histocompatibility antigen class II protein and materials in which the same is bound

This invention provides a process for producing major histocompatibility antigen class II protein (hereinafter referred to as "MHC class II" for short) which occurs on the surfaces of antigen-presenting cells and the like, and MHC class II-bound materials in which MHC class II, alpha and / or beta subunit of MHC class II, or a part thereof is bound to a carrier such as beads, fibers and hollow fibers via covalent bond, as well as a module for removing superantigen using the same. This invention also provides a method for detecting or quantifying superantigens using MHC class II or a part thereof having an affinity to the superantigens, as well as an assay kit therefor.
Owner:TORAY IND INC

Method and apparatus for protein manipulation

A method and apparatus for extracting, identifying, and manipulating proteins or peptides from a solution uses paramagnetic beads having a coating with an affinity for the target component. In one embodiment, paramagnetic beads coated with C18 are used to adsorb proteins and peptides. The beads can be used to purify, immobilize and assay antibodies. By cycling the beads, many times greater molar amount of binding partner may be separated from a solution. A magnetic probe is used to capture the beads and transfer the beads to selected processing stages.
Owner:ANDERSON FORSCHUNG GROUP

Methods for producing members of specific binding pairs

A member of a specific binding pair (sbp) is identified by expressing DNA encoding a genetically diverse population of such sbp members in recombinant host cells in which the sbp members are displayed in functional form at the surface of a secreted recombinant genetic display package (rgdp) containing DNA encoding the sbp member or a polypeptide component thereof, by virtue of the sbp member or a polypeptide component thereof being expressed as a fusion with a capsid component of the rgdp. The displayed sbps may be selected by affinity with a complementary sbp member, and the DNA recovered from selected rgdps for expression of the selected sbp members. Antibody sbp members may be thus obtained, with the different chains thereof expressed, one fused to the capsid component and the other in free form for association with the fusion partner polypeptide. A phagemid may be used as an expression vector, with said capsid fusion helping to package the phagemid DNA. Using this method libraries of DNA encoding respective chains of such multimeric sbp members may be combined, thereby obtaining a much greater genetic diversity in the sbp members than could easily be obtained by conventional methods.
Owner:MEDIMMUNE LTD

DESIGN AND GENERATION OF HUMAN DE NOVO pIX PHAGE DISPLAY LIBRARIES

Described and claimed herein are combinatorial synthetic Fab libraries displayed on a phage pIX protein. The libraries were built on scaffolds representing the most frequently used genes in human antibodies, which were diversified to mirror the variability of natural antibodies. After selection using a diverse panel of proteins, numerous specific and high-affinity Fabs were isolated. By a process called in-line maturation the affinity of some antibodies was improved up to one hundred-fold yielding low pM binders suitable for in vivo use. This work thus demonstrates the feasibility of displaying complex Fab libraries as pIX-fusion proteins for antibody discovery and lays the foundations for studies on the structure-function relationship of antibodies.
Owner:JANSSEN BIOTECH INC

Target and background capture methods with amplification for affinity assays

A method of assay for target polynucleotides includes steps of isolating target polynucleotides from extraneous non-target polynucleotides, debris, and impurities and amplifying the target polynucleotide.
Owner:VYSIS INC

Monoclonal antibody cPAM4

This invention relates to monovalent and multivalent, monospecific antibodies and to monovalent and multivalent, multispecific antibodies. One embodiment of these antibodies has one or more identical binding sites where each binding site binds with a target antigen or an epitope on a target antigen. Another embodiment of these antibodies has two or more binding sites where these binding sites have affinity towards different epitopes on a target antigen or different target antigens, or have affinity towards a target antigen and a hapten. The present invention further relates to recombinant vectors useful for the expression of these functional antibodies in a host. More specifically, the present invention relates to the tumor-associated antibody designated PAM4. The invention further relates to chimeric PAM4 antibodies, and the use of such antibodies in diagnosis and therapy.
Owner:IMMUNOMEDICS INC

Co-localization affinity assays

InactiveUS20110245101A1Library screeningAssay labelsChemical MoietyBinding study
The invention provides a new assay format for high throughput molecular binding studies at a single molecule level. The invention enables creation of binding event identifiers in a highly parallel way. Individual binding events occur between two agents of a binding pair, e.g., a protein-based binding pair or a binding pair comprising a protein and a chemical moiety. The binding event identifier created through the binding of the two binding agents is unique to that pair, and identification of the binding event identifier is indicative of the binding of these specific may be assessed through a readout that is digital in nature. The invention enables very large sets of thousands or more of different binding agents or potential binding agents to be assayed simultaneously, resolving millions or more of potential interactions, and distinguishing specific interactions from those that are less specific.
Owner:PROGNOSYS BIOSCI

Process for purifying antibody

The present invention relates to a process for purifying an antibody having a desired property, which comprises using a substance having an affinity to a carbohydrate binding to the antibody; a medicament comprising, as an active ingredient, the antibody purified by the process; and a method for diagnosing or preventing various diseases, which comprises using a substance having an affinity to a carbohydrate binding to an antibody.
Owner:KYOWA HAKKO KIRIN CO LTD

Mass spectrometric methods for biomolecular screening

The present invention provides methods for the determination of the structure of biomolecular targets, as well as the site and nature of the interaction between ligands and biomolecular targets. The present invention also provides methods for the determination of the relative affinity of a ligand for the biomolecular target it interacts with. Also provided are methods for screening ligand or combinatorial libraries of compounds against one or more than one biological target molecules. The methods of the invention also allow determination of the relative binding affinity of combinatorial and other compounds for a biomolecular target. The present invention further provides methods for the use of mass modifying tags for screening multiple biomolecular targets. In a preferred embodiment, ligands which have great specificity and affinity for molecular interaction sites on biomolecules, especially RNA can be identified. In preferred embodiments, such identification can be made simultaneously with libraries of ligands.
Owner:IONIS PHARMA INC

Heteroindanes: a new class of potent cannabimimetic ligands

One aspect of the invention is concerned with cannabimimetic heteroindane analogs having affinities and / or selectivities for a cannabinoid receptor. A further aspect of the invention is concerned with pharmaceutical preparations employing the inventive analogs and methods of administering therapeutically effective amounts of the inventive analogs to provide a physiological effect.
Owner:UNIV OF CONNECTICUT

Alteration of FcRn binding affinities or serum half-lives of antibodies by mutagenesis

The present invention provides for a modified antibody of class IgG, in which at least one amino acid from the heavy chain constant region selected from the group consisting of amino acid residues 250, 314, and 428 is substituted with another amino acid which is different from that present in the unmodified antibody, thereby altering the binding affinity for FcRn and / or the serum half-life in comparison to the unmodified antibody.
Owner:ABBOTT BIOTHERAPEUTICS CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products