Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

20546results about "Hydrolases" patented technology

Soluble glycosaminoglycanases and methods of preparing and using soluble glycosaminogly ycanases

The invention relates to the discovery of novel soluble neutral active Hyaluronidase Glycoproteins (sHASEGPs), methods of manufacture, and their use to facilitate administration of other molecules or to alleviate glycosaminoglycan associated pathologies. Minimally active polypeptide domains of the soluble, neutral active sHASEGP domains are described that include asparagine-linked sugar moieties required for a functional neutral active hyaluronidase domain. Included are modified amino-terminal leader peptides that enhance secretion of sHASEGP. The invention further comprises sialated and pegylated forms of a recombinant sHASEGP to enhance stability and serum pharmacokinetics over naturally occurring slaughterhouse enzymes. Further described are suitable formulations of a substantially purified recombinant sHASEGP glycoprotein derived from a eukaryotic cell that generate the proper glycosylation required for its optimal activity.
Owner:HALOZYME

Genetic constructs for delaying or repressing the expression of a target gene

The present invention relates generally to synthetic genes for modifying endogenous gene expression in a cell, tissue or organ of a transgenic organism, in particular a transgenic animal or plant. More particularly, the present invention provides novel synthetic genes and genetic constructs which are capable of repressing delaying or otherwise reducing the expression of an endogenous gene or a target gene in an organism when introduced thereto.
Owner:COMMONWEALTH SCI & IND RES ORG

Use of chimeric nucleases to stimulate gene targeting

Gene targeting is a technique to introduce genetic change into one or more specific locations in the genome of a cell. For example, gene targeting can introduce genetic change by modifying, repairing, attenuating or inactivating a target gene or other chromosomal DNA. In one aspect, this disclosure relates to methods and compositions for gene targeting with high efficiency in a cell. This disclosure also relates to methods of treating or preventing a genetic disease in an individual in need thereof. Further disclosed are chimeric nucleases and vectors encoding chimeric nucleases.
Owner:CALIFORNIA INST OF TECH

Crispr/cas systems for genomic modification and gene modulation

The invention relates to engineered CRISPR / Cas9 systems for genomic modification and regulation of gene expression in mammalian cells. The specification describes the design and validation of polynucleotides encoding the Streptococcus pyogenes (S. pyogenes) Cas9 gene and protein and variants of that protein, where the nucleotide sequence has been optimized for expression in mammalian cells, and also modified by fused sequences that enhance various aspects of the CRISPR / Cas system. The specification also describes systems for RNA-guided genome engineering and gene regulation in mammalian cells, including human cells.
Owner:SYST BIOSCI

Methods and compositions for targeted cleavage and recombination

Disclosed herein are methods and compositions for targeted cleavage of a genomic sequence, targeted alteration of a genomic sequence, and targeted recombination between a genomic region and an exogenous polynucleotide homologous to the genomic region. The compositions include fusion proteins comprising a cleavage domain (or cleavage half-domain) and an engineered zinc finger domain and polynucleotides encoding same. Methods for targeted cleavage include introduction of such fusion proteins, or polynucleotides encoding same, into a cell. Methods for targeted recombination additionally include introduction of an exogenous polynucleotide homologous to a genomic region into cells comprising the disclosed fusion proteins.
Owner:SANGAMO BIOSCIENCES INC

Polymerases

Modified DNA polymerases have an affinity for DNA such that the polymerase has an ability to incorporate one or more nucleotides into a plurality of separate DNA templates in each reaction cycle. The polymerases are capable of forming an increased number of productive polymerase-DNA complexes in each reaction cycle. The modified polymerases may be used in a number of DNA sequencing applications, especially in the context of clustered arrays.
Owner:ILLUMINA CAMBRIDGE LTD

Methods and compositions for generating bioactive assemblies of increased complexity and uses

The present invention concerns methods and compositions for making and using bioactive assemblies of defined compositions, which may have multiple functionalities and / or binding specificities. In particular embodiments, the bioactive assembly is formed using dock-and-lock (DNL) methodology, which takes advantage of the specific binding interaction between dimerization and docking domains (DDD) and anchoring domains (AD) to form the assembly. In various embodiments, one or more effectors may be attached to a DDD or AD sequence. Complementary AD or DDD sequences may be attached to an adaptor module that forms the core of the bioactive assembly, allowing formation of the assembly through the specific DDD / AD binding interactions. Such assemblies may be attached to a wide variety of effector moieties for treatment, detection and / or diagnosis of a disease, pathogen infection or other medical or veterinary condition.
Owner:IBC PHARMACEUTICALS INC

Gapped 2' modified oligonucleotides

Oligonucleotides and other macromolecules are provided that have increased nuclease resistance, substituent groups for increasing binding affinity to complementary strand, and sub-sequences of 2'-deoxy-erythro-pentofuranosyl nucleotides that activate RNase H enzyme. Such oligonucleotides and macromolecules are useful for diagnostics and other research purposes, for modulating protein in organisms, and for the diagnosis, detection and treatment of other conditions susceptible to antisense therapeutics.
Owner:IONIS PHARMA INC

Method to control the interfacial layer for deposition of high dielectric constant films

Methods of forming an interfacial layer on a hydrogen-passivated substrate are provided. These methods utilize atomic layer deposition techniques incorporating metal nitrate-based precursors, such as hafnium nitrate or zirconium nitrate, without introducing a hydrating agent, or oxidizing agent, such as water, during the formation of the interfacial layer. Also provided are methods of forming high-k films, by first forming an interfacial layer on the surface of a hydrogen-passivated substrate, and then depositing one, or more, high-k dielectric films.
Owner:SHARP LAB OF AMERICA INC

RNA interference mediated inhibition of gene expression using chemically modified short interfering nucleic acid (SiNA)

The present invention concerns methods and reagents useful in modulating gene expression in a variety of applications, including use in therapeutic, diagnostic, target validation, and genomic discovery applications. Specifically, the invention relates to synthetic chemically modified small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules capable of mediating RNA interference (RNAi) against target nucleic acid sequences. The small nucleic acid molecules are useful in the treatment of any disease or condition that responds to modulation of gene expression or activity in a cell, tissue, or organism.
Owner:SIRNA THERAPEUTICS INC

RNA interference mediated inhibition of B-cell CLL/Lymphoma-2 (BCL-2) gene expression using short interfering nucleic acid (siNA)

This invention relates to compounds, compositions, and methods useful for modulating BCL2 gene expression using short interfering nucleic acid (siNA) molecules. This invention also relates to compounds, compositions, and methods useful for modulating the expression and activity of other genes involved in pathways of BCL2 gene expression and / or activity by RNA interference (RNAi) using small nucleic acid molecules. In particular, the instant invention features small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules and methods used to modulate the expression of BCL2 genes (e.g., BCL2, BCL-XL, BCL2-L1, MCL-1 CED-9, BAG-1, E1B-194 and / or BCL-A1). The small nucleic acid molecules are useful in the treatment of cancer, malignant blood disease, polycytemia vera, idiopathic myelofibrosis, essential thrombocythemia, myelodysplastic syndromes, autoimmune disease, viral infection, and proliferative diseases and conditions
Owner:SIRNA THERAPEUTICS INC

Elongated and multiple spacers in activatible prodrugs

This invention is directed to prodrugs that can be activated at the preferred site of action in order to selectively deliver the corresponding therapeutic parent drugs to target cells or to the target site. This invention will therefore primarily but not exclusively relate to tumor cells as target cells. More specifically the prodrugs are compounds of the formula V—(W)k—(X)l—A—Z, wherein: V is a specifier; (W)k—(X)l—A is an elongated self-elimination spacer system; W and X are each a 1,(4+2n) electronic cascade spacer, being the same or different; A is either a spacer group of formula (Y)m wherein: Y is a 1,(4+2n) electronic cascade spacer, or a group of formula U being a cyclization elimination spacer; Z is a therapeutic drug; k, l and m are integers from 0 (included) to 5 (included); n is an integer of 0 (included) to 10 (included), with the provisos that: —when A is (Y)m: k+l+m≧1, and if k+l+m=1; —when A is U: k+l≧1.
Owner:BYONDIS BV

Fermentive production of four carbon alcohols

Methods for the fermentive production of four carbon alcohols are provided. Specifically, butanol, preferably 2-butanol is produced by the fermentive growth of a recombinant bacteria expressing a 2-butanol biosynthetic pathway. The recombinant microorganisms and methods of the invention can also be adapted to produce 2-butanone, an intermediate in the 2-butanol biosynthetic pathways disclosed herein.
Owner:GEVO INC

Methods and Compositions for the Targeted Modification of a Genome

Compositions and methods are provided for modifying a genomic locus of interest in a eukaryotic cell, a mammalian cell, a human cell or a non-human mammalian cell using a large targeting vector (LTVEC) comprising various endogenous or exogenous nucleic acid sequences as described herein. Further methods combine the use of the LTVEC with a CRISPR / Cas system. Compositions and methods for generating a genetically modified non-human animal comprising one or more targeted genetic modifications in their germline are also provided.
Owner:REGENERON PHARM INC

Imide-based modulators of proteolysis and associated methods of use

InactiveUS20160058872A1Organic active ingredientsCompound screeningCereblonProteolytic Regulation
The description relates to imide-based compounds, including bifunctional compounds comprising the same, which find utility as modulators of targeted ubiquitination, especially inhibitors of a variety of polypeptides and other proteins which are degraded and / or otherwise inhibited by bifunctional compounds according to the present invention. In particular, the description provides compounds, which contain on one end a ligand which binds to the cereblon E3 ubiquitin ligase and on the other end a moiety which binds a target protein such that the target protein is placed in proximity to the ubiquitin ligase to effect degradation (and inhibition) of that protein. Compounds can be synthesized that exhibit a broad range of pharmacological activities consistent with the degradation / inhibition of targeted polypeptides of nearly any type.
Owner:ARVINAS OPERATIONS INC

Fermentive production of four carbon alcohols

Methods for the fermentive production of four carbon alcohols are provided. Specifically, butanol, preferably 2-butanol is produced by the fermentive growth of a recombinant bacteria expressing a 2-butanol biosynthetic pathway. The recombinant microorganisms and methods of the invention can also be adapted to produce 2-butanone, an intermediate in the 2-butanol biosynthetic pathways disclosed herein.
Owner:GEVO INC

Methods and compounds for controlled release of recombinant parvovirus vectors

The invention uses recombinant parvoviruses, and particularly recombinant adeno-associated virus (rAAV) to deliver genes and DNA sequences for gene therapy following manipulation of the therapeutic virus for packaging and transport. The invention delivers therapeutic viral vectors via rAAV affixed to support matrixes (i.e., sutures, surgically implantable materials, grafts, and the like).
Owner:NORTH CAROLINA AT CHAPEL HILL THE UNIV OF

RNA interference mediated inhibition of wingless gene expression using short interfering nucleic acid (siNA)

This invention relates to compounds, compositions, and methods useful for modulating wingless (WNT) gene expression using short interfering nucleic acid (siNA) molecules. This invention also relates to compounds, compositions, and methods useful for modulating the expression and activity of other genes involved in pathways of WNT gene expression and / or activity by RNA interference (RNAi) using small nucleic acid molecules. In particular, the instant invention features small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules and methods used to modulate the expression of WNT genes such as WNT3A and WNT7A.
Owner:SIRNA THERAPEUTICS INC

Brassica plant comprising mutant fatty acyl-acp thioesterase alleles

ActiveUS20110145944A1Reduce the amount requiredMinimal level of functional FATB proteinHydrolasesImmunoglobulinsAcyl carrier proteinWild type
The invention relates to crop plants comprising novel seed lipid compositions. Provided are both wild type and mutant nucleic acid molecules encoding Brassica fatty acyl-acyl carrier protein (ACP) thioesterase B proteins (FATB) and the proteins as such. Also provided are Brassica plants, tissue and seeds comprising at least three mutant fatB alleles in their genome, whereby the seed oil fatty acid composition or profile is significantly altered.
Owner:BAYER CROPSCIENCE NV

Production of peracids using an enzyme having perhydrolysis activity

A process is provided for producing peroxycarboxylic acids from carboxylic acid esters. More specifically, carboxylic acid esters are reacted with an inorganic peroxide, such as hydrogen peroxide, in the presence of an enzyme catalyst having perhydrolysis activity. The present perhydrolase catalysts are classified as members of the carbohydrate esterase family 7 (CE-7) based on the conserved structural features. Further, disinfectant formulations comprising the peracids produced by the processes described herein are provided.
Owner:DUPONT US HLDG LLC

Enzymes for starch processing

InactiveUS20050054071A1Increased acid alpha-amylase activityImprove enzyme stabilitySugar derivativesBacteriaBiotechnologyCarbohydrate-binding protein
The present invention relates to a hybrid enzyme comprising carbohydrate-binding module amino acid sequence and a fungal alpha-amylase amino acid sequence and to a variant of a fungal wild type enzyme comprising a carbohydrate-binding module and an alpha-amylase catalytic module. The invention also relates to the use of the hybrid enzyme or the variant in starch liquefaction.
Owner:NOVOZYMES AS +1

Lipid metabolism regulators in plants

The present invention is directed to novel nucleic acid and amino acid sequences associated with the metabolism of seed storage compounds in plants. A novel discovery described herein lies in the identification of the nucleic acid sequences that encode the wri1 genetic locus in Arabidopsis thaliana, and lipid metabolism regulator (LMR) polynucleotide sequences contained therein. Preferably, the seed storage compounds are lipids, fatty acids, starches or seed storage proteins.
Owner:BOARD OF TRUSTEES OPERATING MICHIGAN STATE UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products