Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

3762 results about "Target protein" patented technology

Target proteins are functional biomolecules that are addressed and controlled by biologically active compounds. They are used in the processes of transduction, transformation and conjugation. The identification of target proteins, the investigation of signal transduction processes and the understanding of their interaction with ligands are key elements of modern biomedical research. Since the interaction with target proteins is the molecular origin of most drugs, their particular importance for molecular biology, molecular pharmacy and pharmaceutical sciences is obvious. Target proteins control the action and the kinetic behavior of drugs within the organism. The elucidation of structure, conformational signaling and catalytic properties of particular target proteins facilitates a rational design of drugs and biotechnological processes. Known as biologicals, target proteins can also be drugs by themselves when their modification and formulation is emphasized within the pharmaceutical sciences. Finally, target protein - inducer interactions can be exploited for biomolecular transcription regulating systems in order to control for example gene therapeutic approaches.

Amino lipids and methods for the delivery of nucleic acids

The present invention provides superior compositions and methods for the delivery of therapeutic agents to cells. In particular, these include novel lipids and nucleic acid-lipid particles that provide efficient encapsulation of nucleic acids and efficient delivery of the encapsulated nucleic acid to cells in vivo. The compositions of the present invention are highly potent, thereby allowing effective knock-down of specific target proteins at relatively low doses. In addition, the compositions and methods of the present invention are less toxic and provide a greater therapeutic index compared to compositions and methods previously known in the art.
Owner:ARBUTUS BIOPHARMA CORPORAT ION +1

Imide-based modulators of proteolysis and associated methods of use

InactiveUS20160058872A1Organic active ingredientsCompound screeningCereblonProteolytic Regulation
The description relates to imide-based compounds, including bifunctional compounds comprising the same, which find utility as modulators of targeted ubiquitination, especially inhibitors of a variety of polypeptides and other proteins which are degraded and / or otherwise inhibited by bifunctional compounds according to the present invention. In particular, the description provides compounds, which contain on one end a ligand which binds to the cereblon E3 ubiquitin ligase and on the other end a moiety which binds a target protein such that the target protein is placed in proximity to the ubiquitin ligase to effect degradation (and inhibition) of that protein. Compounds can be synthesized that exhibit a broad range of pharmacological activities consistent with the degradation / inhibition of targeted polypeptides of nearly any type.
Owner:ARVINAS OPERATIONS INC

Compounds & Methods for the Enhanced Degradation of Targeted Proteins & Other Polypeptides by an E3 Ubiquitin Ligase

The present invention relates to bifunctional compounds, which find utility as modulators of targeted ubiquitination, especially inhibitors of a variety of polypeptides and other proteins that are degraded and / or otherwise inhibited by bifunctional compounds of the present invention. In particular, the present invention is directed to compounds, which contain on one end a VHL ligand that binds to the ubiquitin ligase and on the other end a moiety that binds a target protein, such that the target protein is placed in proximity to the ubiquitin ligase to effect degradation (and inhibition) of that protein. The present invention exhibits a broad range of pharmacological activities associated with compounds of the present invention, consistent with the degradation / inhibition of targeted polypeptides.
Owner:YALE UNIV +2

Cationic lipids and methods for the delivery of therapeutic agents

The present invention provides compositions and methods for the delivery of therapeutic agents to cells. In particular, these include novel cationic lipids and nucleic acid-lipid particles that provide efficient encapsulation of nucleic acids and efficient delivery of the encapsulated nucleic acid to cells in vivo. The compositions of the present invention are highly potent, thereby allowing effective knock-down of a specific target protein at relatively low doses. In addition, the compositions and methods of the present invention are less toxic and provide a greater therapeutic index compared to compositions and methods previously known in the art.
Owner:PROTIVA BIOTHERAPEUTICS

Compositions and methods for the delivery of nucleic acids

The present invention provides compositions and methods for the delivery of therapeutic agents to cells. In particular, these include novel lipids and nucleic acid-lipid particles that provide efficient encapsulation of nucleic acids and efficient delivery of the encapsulated nucleic acid to cells in vivo. The compositions of the present invention are highly potent, thereby allowing effective knock-down of specific target protein at relatively low doses. In addition, the compositions and methods of the present invention are less toxic and provide a greater therapeutic index compared to compositions and methods previously known in the art.
Owner:THE UNIV OF BRITISH COLUMBIA +2

Trialkyl cationic lipids and methods of use thereof

The present invention provides compositions and methods for the delivery of therapeutic agents to cells. In particular, these include novel cationic lipids and nucleic acid-lipid particles that provide efficient encapsulation of nucleic acids and efficient delivery of the encapsulated nucleic acid to cells in vivo. The compositions of the present invention are highly potent, thereby allowing effective knock-down of a specific target protein at relatively low doses. In addition, the compositions and methods of the present invention are less toxic and provide a greater therapeutic index compared to compositions and methods previously known in the art.
Owner:PROTIVA BIOTHERAPEUTICS

Functional surface coating

Compositions and methods of preparing functional thin films or surface coatings with low non-specific binding are described. The thin films contain specified functional groups and non-specific binding repellant components. The thin films are either covalently bound to or passively adsorbed to various solid substrates. The specified functional group provides specified activity for the thin film modified solid surfaces and non-specific binding repellant components significantly reduce the non-specific binding to the thin film modified solid surfaces. Non-specific binding repellant components do not affect specified functional group's activity in the thin films. In these methods, specified functional groups are anchored to the solid substrates through a spacer. Surface coatings are also described having both non-specific protein binding properties combined with functional groups for specific binding activity thereby providing surface coating that specifically recognize target proteins but limit binding to non-specific protein.
Owner:ACCELERATED MEDICAL DIAGNOSTICS INC

Novel cationic lipids and methods of use thereof

The present invention provides compositions and methods for the delivery of therapeutic agents to cells. In particular, these include novel cationic lipids and nucleic acid-lipid particles that provide efficient encapsulation of nucleic acids and efficient delivery of the encapsulated nucleic acid to cells in vivo. The compositions of the present invention are highly potent, thereby allowing effective knock-down of a specific target protein at relatively low doses. In addition, the compositions and methods of the present invention are less toxic and provide a greater therapeutic index compared to compositions and methods previously known in the art.
Owner:PROTIVA BIOTHERAPEUTICS

Methods for drug target screening

The present invention provides methods for identifying targets of a drug in a cell by comparing (i) the effects of the drug on a wild-type cell, (ii) the effects on a wild-type cell of modifications to a putative target of the drug, and (iii) the effects of the drug on a wild-type cell which has had the putative target modified of the drug. In various embodiments, the effects on the cell can be determined by measuring gene expression, protein abundances, protein activities, or a combination of such measurements. In various embodiments, modifications to a putative target in the cell can be made by modifications to the genes encoding the target, modification to abundances of RNAs encoding the target, modifications to abundances of target proteins, or modifications to activities of the target proteins. The present invention also provides methods for drug development based on the methods for identifying drug targets.
Owner:FRED HUTCHINSON CANCER RES CENT

Compounds and methods for the enhanced degradation of targeted proteins

ActiveUS20160272639A1Senses disorderNervous disorderProtein targetEnhanced degradation
The present invention relates to bifunctional compounds, which find utility as modulators of targeted ubiquitination, especially inhibitors of a variety of polypeptides and other proteins which are degraded and / or otherwise inhibited by bifunctional compounds according to the present invention. In particular, the present invention is directed to compounds, which contain on one end a VHL ligand which binds to the ubiquitin ligase and on the other end a moiety which binds a target protein such that the target protein is placed in proximity to the ubiquitin ligase to effect degradation (and inhibition) of that protein. The present invention exhibits a broad range of pharmacological activities associated with compounds according to the present invention, consistent with the degradation / inhibition of targeted polypeptides.
Owner:YALE UNIV +1

Trialkyl cationic lipids and methods of use thereof

The present invention provides compositions and methods for the delivery of therapeutic agents to cells. In particular, these include novel, trialkyl, cationic lipids and nucleic acid-lipid particles that provide efficient encapsulation of nucleic acids and efficient delivery of the encapsulated nucleic acid to cells in vivo. The compositions of the present invention are highly potent, thereby allowing effective knock-down of a specific target protein at relatively low doses.
Owner:ARBUTUS BIOPHARMA CORPORAT ION

High sensitivity quantitation of peptides by mass spectrometry

InactiveUS20040072251A1Loss of substantial specific binding capacityReduce complexitySamplingComponent separationChemical structureProtein target
The instant invention provides an economical flow-through method for determining amount of target proteins in a sample. An antibody preparation (whether polyclonal or monoclonal, or any equivalent specific binding agent) is used to capture and thus enrich a specific monitor peptide (a specific peptide fragment of a protein to be quantitated in a proteolytic digest of a complex protein sample) and an internal standard peptide (the same chemical structure but including stable isotope labels). Upon elution into a suitable mass spectrometer, the natural (sample derived) and internal standard (isotope labeled) peptides are quantitated, and their measured abundance ratio used to calculate the abundance of the monitor peptide, and its parent protein, in the initial sample
Owner:ANDERSON FORSCHUNG GROUP

Intein-mediated protein ligation of expressed proteins

A method for the ligation of expressed proteins which utilizes inteins, for example the RIR1 intein from Methanobacterium thermotrophicum, is provided. Constructs of the Mth RIR1 intein in which either the C-terminal asparagine or N-terminal cysteine of the intein are replaced with alanine enable the facile isolation of a protein with a specified N-terminal, for example, cysteine for use in the fusion of two or more expressed proteins. The method involves the steps of generating a C-terminal thioester-tagged target protein and a second target protein having a specified N-terminal via inteins, such as the modified Mth RIR1 intein, and ligating these proteins. A similar method for producing a cyclic or polymerized protein is provided. Modified inteins engineered to cleave at their C-terminus or N-terminus, respectively, and DNA and plasmids encoding these modified inteins are also provided.
Owner:NEW ENGLAND BIOLABS

Controlling protein levels in eucaryotic organisms

The invention relates to novel compounds comprising a ubiquitination recognition element and a protein binding element. The invention also relates to the use of said compounds for modulating the level and / or activity of a target protein. The compounds are useful for the treatment of disease such as infections, inflammatory conditions, cancer and genetic diseases. The compounds are also useful as insecticides and herbicides.
Owner:WELLSTAT BIOCATALYSIS +1

Centrifugal force-based microfluidic device for protein detection and microfluidic system including the same

A centrifugal force-based microfluidic device for the detection of a target biomolecule and a microfluidic system including the same are provided. The device includes a body of revolution; a microfluidic structure disposed in the body of revolution including chambers, channels connecting the chambers, and valves disposed in the channels to control fluid flow, the microfluidic structures transmitting fluid using centrifugal force due to rotation of the body of revolution; and beads disposed in the microfluidic structures, the beads having capture probes on the surfaces thereof which are selectively bonded with target protein; and a detection probe disposed in the microfluidic structures and selectively bonded to the target protein, and which includes a material required to express an optical signal, wherein the microfluidic structure mixes the beads, biological samples, and the detection probe to react and washes and separates the beads after the reaction.
Owner:PRECISIONBIOSENSOR INC

High throughput generation and screening of fully human antibody repertoire in yeast

Compostions, kits and methods are provided for generating highly diverse libraries of proteins such as antibodies via homologous recombination in vivo, and screening these libraries against protein, peptide and nucleic acid targets using a two-hybrid method in yeast. The method for screening a library of tester proteins against a target protein or peptide comprises: expressing a library of tester proteins in yeast cells, each tester protein being a fusion protein comprised of a first polypeptide subunit whose sequence varies within the library, a second polypeptide subunit whose sequence varies within the library independently of the first polypeptide, and a linker peptide which links the first and second polypeptide subunits; expressing one or more target fusion proteins in the yeast cells expressing the tester proteins, each of the target fusion proteins comprising a target peptide or protein; and selecting those yeast cells in which a reporter gene is expressed, the expression of the reporter gene being activated by binding of the tester fusion protein to the target fusion protein.
Owner:GENETASTIX CORP

Ch3 domain variant pair inducing formation of heterodimer of heavy chain constant region of antibody at high efficiency, method for preparing same, and use thereof

Disclosed are a CH3 domain variant pair of an antibody, a method for preparing same, and a use thereof. A mutation is induced in the CH3 domain so as to improve a yield of forming a heterodimer heavy chain constant region of an antibody. The CH3 domain heterodimer forms a heterodimer heavy chain constant region with a high efficiency of 90 to 95% or more and also has outstanding heat stability. A heterodimer heavy chain constant region including the CH3 domain heterodimer can construct a bispecific monoclonal antibody which simultaneously recognizes two kinds of antigens. The CH3 domain heterodimer and the bispecific antibody or fusion protein of an antibody constant region comprising same can be usefully applied to the treatment or prevention of a disease associated with a target antigen or a target protein.
Owner:AJOU UNIV IND ACADEMIC COOP FOUND

Novel trialkyl cationic lipids and methods of use thereof

The present invention provides compositions and methods for the delivery of therapeutic agents to cells. In particular, these include novel cationic lipids and nucleic acid-lipid particles that provide efficient encapsulation of nucleic acids and efficient delivery of the encapsulated nucleic acid to cells in vivo. The compositions of the present invention are highly potent, thereby allowing effective knock-down of a specific target protein at relatively low doses. In addition, the compositions and methods of the present invention are less toxic and provide a greater therapeutic index compared to compositions and methods previously known in the art.
Owner:PROTIVA BIOTHERAPEUTICS

Pharmaceutical composition comprising an immunoglobulin fc region as a carrier

Disclosed is a novel use of an immunoglobulin Fe fragment, and more particularly, a pharmaceutical composition comprising an immunoglobulin Fe fragment as a carrier. The pharmaceutical composition comprising an immunoglobulin Fe fragment as a carrier remarkably extends the serum half-life of a drug while maintaining the in vivo activity of the drug at relatively high levels. Also, when the drug is a polypeptide drug, the pharmaceutical composition has less risk of inducing immune responses compared to a fusion protein of the immunoglobulin Fe fragment and a target protein, and is thus useful for developing long-acting formulations of various polypeptide drugs.
Owner:HANMI SCI CO LTD

Cereblon ligands and bifunctional compounds comprising the same

The description relates to cereblon E3 ligase binding compounds, including bifunctional compounds comprising the same, which find utility as modulators of targeted ubiquitination, especially inhibitors of a variety of polypeptides and other proteins which are degraded and / or otherwise inhibited by bifunctional compounds according to the present disclosure. In particular, the description provides compounds, which contain on one end a ligand which binds to the cereblon E3 ubiquitin ligase and on the other end a moiety which binds a target protein such that the target protein is placed in proximity to the ubiquitin ligase to effect degradation (and inhibition) of that protein. Compounds can be synthesized that exhibit a broad range of pharmacological activities consistent with the degradation / inhibition of targeted polypeptides of nearly any type.
Owner:ARVINAS OPERATIONS INC

Cereblon ligands and bifunctional compounds comprising the same

The description relates to cereblon E3 ligase binding compounds, including bifunctional compounds comprising the same, which find utility as modulators of targeted ubiquitination, especially inhibitors of a variety of polypeptides and other proteins which are degraded and / or otherwise inhibited by bifunctional compounds according to the present disclosure. In particular, the description provides compounds, which contain on one end a ligand which binds to the cereblon E3 ubiquitin ligase and on the other end a moiety which binds a target protein such that the target protein is placed in proximity to the ubiquitin ligase to effect degradation (and inhibition) of that protein. Compounds can be synthesized that exhibit a broad range of pharmacological activities consistent with the degradation / inhibition of targeted polypeptides of nearly any type.
Owner:ARVINAS OPERATIONS INC

Targeting proteins to cells expressing mannose receptors via expression in insect cells

The present invention is based on the discovery that proteins produced in insect cell cultures are glycosylated in a unique manner that causes them to be selectively imported by cells that express mannose receptors on their membranes, particularly macrophages. Proteins that are selectively imported into cells containing mannose receptors are provided, as well as pharmaceutical compositions containing such proteins and methods for producing such proteins. Application of the present invention to produce proteins useful for treating lysosomal storage disorders is also disclosed. Engineering of cells to express mannose receptors so that they will selectively import proteins produced in insect cells is also taught, as well as a protein targeting system using such cells and proteins. Finally, an improved elution buffer for the purification of proteins produced in insect cells from a Concanavalin A column is provided.
Owner:ST JUDE CHILDRENS RES HOSPITAL INC

Amino lipids and methods for the delivery of nucleic acids

The present invention provides superior compositions and methods for the delivery of therapeutic agents to cells. In particular, these include novel lipids and nucleic acid-lipid particles that provide efficient encapsulation of nucleic acids and efficient delivery of the encapsulated nucleic acid to cells in vivo. The compositions of the present invention are highly potent, thereby allowing effective knock-down of specific target proteins at relatively low doses. In addition, the compositions and methods of the present invention are less toxic and provide a greater therapeutic index compared to compositions and methods previously known in the art.
Owner:ARBUTUS BIOPHARMA CORPORAT ION +1

Protein expression vector and utilization thereof

A protein expression vector containing (a) a nucleotide sequence encoding an IgG(κ) or a trypsin secretory signal peptide, (b) a nucleotide sequence encoding a polyhistidine amino acid sequence, (c) a nucleotide sequence encoding an amino acid sequence comprising amino acid residues 36–40 of SEQ ID NO:19 (Asp-Asp-Asp-Asp-Lys), which is cleavable by an enterokinase, and (d) a cloning site into which a nucleotide sequence encoding a target protein can be inserted, wherein (a), (b), (c) and (d) are assembled within the vector in the order recited.
Owner:FUSO PHARMA INDS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products