Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1414 results about "Eukaryotic cell" patented technology

A eukaryotic cell is any cell with a true nucleus and organelles. The nucleus contains the majority of the cell’s DNA and is the genetic hub of a eukaryotic cell.

Soluble glycosaminoglycanases and methods of preparing and using soluble glycosaminogly ycanases

The invention relates to the discovery of novel soluble neutral active Hyaluronidase Glycoproteins (sHASEGPs), methods of manufacture, and their use to facilitate administration of other molecules or to alleviate glycosaminoglycan associated pathologies. Minimally active polypeptide domains of the soluble, neutral active sHASEGP domains are described that include asparagine-linked sugar moieties required for a functional neutral active hyaluronidase domain. Included are modified amino-terminal leader peptides that enhance secretion of sHASEGP. The invention further comprises sialated and pegylated forms of a recombinant sHASEGP to enhance stability and serum pharmacokinetics over naturally occurring slaughterhouse enzymes. Further described are suitable formulations of a substantially purified recombinant sHASEGP glycoprotein derived from a eukaryotic cell that generate the proper glycosylation required for its optimal activity.
Owner:HALOZYME

Soluble glycosaminoglycanases and methods of preparing and using soluble glycosaminoglycanases

The invention relates to the discovery of novel soluble neutral active Hyaluronidase Glycoproteins (sHASEGPs), methods of manufacture, and their use to facilitate administration of other molecules or to alleviate glycosaminoglycan associated pathologies. Minimally active polypeptide domains of the soluble, neutral active sHASEGP domains are described that include asparagine-linked sugar moieties required for a functional neutral active hyaluronidase domain. Included are modified amino-terminal leader peptides that enhance secretion of sHASEGP. The invention further comprises sialated and pegylated forms of a recombinant sHASEGP to enhance stability and serum pharmacokinetics over naturally occurring slaughterhouse enzymes. Further described are suitable formulations of a substantially purified recombinant sHASEGP glycoprotein derived from a eukaryotic cell that generate the proper glycosylation required for its optimal activity.
Owner:HALOZYME

Methods of modifying eukaryotic cells

A method for engineering and utilizing large DNA vectors to target, via homologous recombination, and modify, in any desirable fashion, endogenous genes and chromosomal loci in eukaryotic cells. These large DNA targeting vectors for eukaryotic cells, termed LTVECs, are derived from fragments of cloned genomic DNA larger than those typically used by other approaches intended to perform homologous targeting in eukaryotic cells. Also provided is a rapid and convenient method of detecting eukaryotic cells in which the LTVEC has correctly targeted and modified the desired endogenous gene(s) or chromosomal locus (loci) as well as the use of these cells to generate organisms bearing the genetic modification.
Owner:REGENERON PHARM INC

Methods of making conditioned cell culture medium compositions

Novel products comprising conditioned cell culture medium compositions and methods of use are described. The conditioned cell medium compositions of the invention may be comprised of any known defined or undefined medium and may be conditioned using any eukaryotic cell type. The medium may be conditioned by stromal cells, parenchymal cells, mesenchymal stem cells, liver reserve cells, neural stem cells, pancreatic stem cells and / or embryonic stem cells. Additionally, the cells may be genetically modified. A three-dimensional tissue construct is preferred. Once the cell medium of the invention is conditioned, it may be used in any state. Physical embodiments of the conditioned medium include, but are not limited to, liquid or solid, frozen, lyophilized or dried into a powder. Additionally, the medium is formulated with a pharmaceutically acceptable carrier as a vehicle for internal administration, applied directly to a food item or product, formulated with a salve or ointment for topical applications, or, for example, made into or added to surgical glue to accelerate healing of sutures following invasive procedures. Also, the medium may be further processed to concentrate or reduce one or more factors or components contained within the medium.
Owner:ALLERGAN INC

Methods of modifying eukaryotic cells

A method for engineering and utilizing large DNA vectors to target, via homologous recombination, and modify, in any desirable fashion, endogenous genes and chromosomal loci in eukaryotic cells. These large DNA targeting vectors for eukaryotic cells, termed LTVECs, are derived from fragments of cloned genomic DNA larger than those typically used by other approaches intended to perform homologous targeting in eukaryotic cells. Also provided is a rapid and convenient method of detecting eukaryotic cells in which the LTVEC has correctly targeted and modified the desired endogenous gene(s) or chromosomal locus (loci) as well as the use of these cells to generate organisms bearing the genetic modification.
Owner:REGENERON PHARM INC

Artificial antigen presenting cells and methods of use thereof

InactiveUS20020131960A1Palliating their conditionReduce riskBiocideCompound screeningEpitopeAccessory molecule
The invention provides an artificial antigen presenting cell (AAPC) comprising a eukaryotic cell expressing an antigen presenting complex comprising a human leukocyte antigen (HLA) molecule of a single type, at least one exogenous accessory molecule and at least one exogenous T cell-specific epitope. Methods of use for activation of T lymphocytes are also provided.
Owner:MEMORIAL SLOAN KETTERING CANCER CENT

Methods and compositions for the specific inhibition of gene expression by double-stranded RNA

The invention is directed to compositions and methods for selectively reducing the expression of a gene product from a desired target gene in a cell, as well as for treating diseases caused by the expression of the gene. More particularly, the invention is directed to compositions that contain double stranded RNA (“dsRNA”), and methods for preparing them, that are capable of reducing the expression of target genes in eukaryotic cells. The dsRNA has a first oligonucleotide sequence that is between 25 and about 30 nucleotides in length and a second oligonucleotide sequence that anneals to the first sequence under biological conditions. In addition, a region of one of the sequences of the dsRNA having a sequence length of at least 19 nucleotides is sufficiently complementary to a nucleotide sequence of the RNA produced from the target gene to trigger the destruction of the target RNA by the RNAi machinery.
Owner:CITY OF HOPE +1

Methods and compositions for the specific inhibition of gene expression by double-stranded RNA

The invention is directed to compositions and methods for selectively reducing the expression of a gene product from a desired target gene in a cell, as well as for treating diseases caused by the expression of the gene. More particularly, the invention is directed to compositions that contain double stranded RNA (“dsRNA”), and methods for preparing them, that are capable of reducing the expression of target genes in eukaryotic cells. The dsRNA has a first oligonucleotide sequence that is between 25 and about 30 nucleotides in length and a second oligonucleotide sequence that anneals to the first sequence under biological conditions. In addition, a region of one of the sequences of the dsRNA having a sequence length of at least 19 nucleotides is sufficiently complementary to a nucleotide sequence of the RNA produced from the target gene to trigger the destruction of the target RNA by the RNAi machinery.
Owner:CITY OF HOPE +1

Methods and Compositions for the Targeted Modification of a Genome

Compositions and methods are provided for modifying a genomic locus of interest in a eukaryotic cell, a mammalian cell, a human cell or a non-human mammalian cell using a large targeting vector (LTVEC) comprising various endogenous or exogenous nucleic acid sequences as described herein. Further methods combine the use of the LTVEC with a CRISPR / Cas system. Compositions and methods for generating a genetically modified non-human animal comprising one or more targeted genetic modifications in their germline are also provided.
Owner:REGENERON PHARM INC

Eukaryotic use of non-chimeric mutational vectors

The invention is based on the reaction of Duplex Mutational Vector in a cell-free system containing a cytoplasmic cell extract and a test plasmid. The reaction specifically converts a mutant kanr gene to recover the resistant phenotype in transformed MutS, RecA deficient bacteria. Using this system a type of Duplex Mutational Vector termed a Non-Chimeric Mutational Vector, having no RNA:DNA hybrid-duplex is shown to be an effective substrate for eukaryotic enzymes. The invention concerns the use of Non-Chimeric Mutational Vectors protected from 3' exonuclease attack in eukaryotic cells. Such protection can be conferred by replacement of a tetrathymidine linker by a nuclease resistant oligonucleotide, such as tetra-2'-O-methyl-uridine, to link the two strands of the recombinagenic oligonucleobase.
Owner:VALIGEN US +1

Methods and compositions for the targeted modification of a genome

Compositions and methods are provided for modifying a genomic locus of interest in a eukaryotic cell, a mammalian cell, a human cell or a non-human mammalian cell using a large targeting vector (LTVEC) comprising various endogenous or exogenous nucleic acid sequences as described herein. Further methods combine the use of the LTVEC with a CRISPR / Cas system. Compositions and methods for generating a genetically modified non-human animal comprising one or more targeted genetic modifications in their germline are also provided.
Owner:REGENERON PHARM INC

Methods of modifying eukaryotic cells

A method for engineering and utilizing large DNA vectors to target, via homologous recombination, and modify, in any desirable fashion, endogenous genes and chromosomal loci in eukaryotic cells. These large DNA targeting vectors for eukaryotic cells, termed LTVECs, are derived from fragments of cloned genomic DNA larger than those typically used by other approaches intended to perform homologous targeting in eukaryotic cells. Also provided is a rapid and convenient method of detecting eukaryotic cells in which the LTVEC has correctly targeted and modified the desired endogenous genes(s) or chromosomal locus (loci) as well as the use of these cells to generate organisms bearing the genetic modification.
Owner:REGENERON PHARM INC

Induction of exon skipping in eukaryotic cells

The present invention provides a method for at least in part decreasing the production of an aberrant protein in a cell, the cell comprising pre-mRNA comprising exons coding for the protein, by inducing so-called exon skipping in the cell. Exon-skipping results in mature MRNA that does not contain the skipped exon, which leads to an altered product of the exon codes for amino acids. Exon skipping is performed by providing a cell with an agent capable of specifically inhibiting an exon inclusion signal, for instance, an exon recognition sequence, of the exon. The exon inclusion signal can be interfered with by a nucleic acid comprising complementarity to a part of the exon. The nucleic acid, which is also herewith provided, can be used for the preparation of a medicament, for instance, for the treatment of an inherited disease.
Owner:LEIDEN ACADEMISCH ZIEKENHUIS

Composition for cleaving a target DNA comprising a guide RNA specific for the target DNA and cas protein-encoding nucleic acid or cas protein, and use thereof

The present invention relates to targeted genome editing in eukaryotic cells or organisms. More particularly, the present invention relates to a composition for cleaving a target DNA in eukaryotic cells or organisms comprising a guide RNA specific for the target DNA and Cas protein-encoding nucleic acid or Cas protein, and use thereof.
Owner:TOOLGEN INC

Composition for cleaving a target DNA comprising a guide RNA specific for the target DNA and cas protein-encoding nucleic acid or cas protein, and use thereof

The present invention relates to targeted genome editing in eukaryotic cells or organisms. More particularly, the present invention relates to a composition for cleaving a target DNA in eukaryotic cells or organisms comprising a guide RNA specific for the target DNA and Cas protein-encoding nucleic acid or Cas protein, and use thereof.
Owner:TOOLGEN INC

Compositions and methods for reprogramming mammalian cells

The present invention relates to methods for changing the state of differentiation of a eukaryotic cell, the methods comprising introducing mRNA encoding one or more reprogramming factors into a cell and maintaining the cell under conditions wherein the cell is viable and the mRNA that is introduced into the cell is expressed in sufficient amount and for sufficient time to generate a cell that exhibits a changed state of differentiation compared to the cell into which the mRNA was introduced, and compositions therefor. For example, the present invention provides mRNA molecules and methods for their use to reprogram human somatic cells into pluripotent stem cells.
Owner:CELLSCRIPT

Transformed eukaryotic cells that directly convert xylose to xylulose

The present invention relates to host cells transformed with a nucleic acid sequence encoding a eukaryotic xylose isomerase obtainable from an anaerobic fungus. When expressed, the sequence encoding the xylose isomerase confers to the host cell the ability to convert xylose to xylulose which may be further metabolised by the host cell. Thus, the host cell is capable of growth on xylose as carbon source. The host cell preferably is a eukaryotic microorganism such as a yeast or a filamentous fungus. The invention further relates to processes for the production of fermentation products such as ethanol, in which a host cell of the invention uses xylose for growth and for the production of the fermentation product. The invention further relates to nucleic acid sequences encoding eukaryotic xylose isomerases and xylulose kinases as obtainable from anaerobic fungi.
Owner:DSM IP ASSETS BV

Methods for gene array analysis of nuclear runoff transcripts

Methods for determining transcription rate of mRNA in eukaryotic cells using nuclear runoff transcription where labeled RNA molecules are hybridized against an array of at least 500 nucleic acid molecule probes representing at least part of the genome of the native eukaryotic organism to identify the quantity of nascent mRNA transcripts in said cells. The method can be used to simultaneously identify the quantity of a large number of mRNA transcripts. A rate of degradation for distinct mRNA in a eukaryotic cell rate is determined by comparing a steady state mRNA with nuclear runoff mRNA. Steady state to nuclear runoff ratios are used to determine gene and mRNA structure function relations that leads to gene expression and mRNA stability, predict structural determinants for mRNA stability and predict regulatory motifs for transcription rates. Methods of constructing recombinant organisms with enhanced stability for mRNA expressed from a gene of interest comprise introducing into the genome of an organism a gene containing one or more sequence elements that confer structural stability on mRNA transcribed from said gene.
Owner:MONSANTO TECH LLC

Matrix attachment regions and methods for use thereof

The present invention relates to compositions and methods for transfecting eukaryotic cells with nucleic acid vectors. In particular, the invention relates to the uses of Matrix Attachment Region (MAR) elements to increase stable and transient transfection efficiency.
Owner:SELEXIS SA

Site-specific serine recombinases and methods of their use

The present invention provides a method for obtaining site-specific recombination in a eukaryotic cell, the method comprising providing a eukaryotic cell that comprises a first recombination attachment site and a second recombination attachment site; contacting the first and second recombination attachment sites with a prokaryotic recombinase polypeptide, resulting in recombination between the recombination attachment sites, wherein the recombinase polypeptide can mediate recombination between the first and second recombination attachment sites, the first recombination attachment site is a phage genomic recombination attachment site (attP) or a bacterial genomic recombination attachment site (attB), the second recombination site is attB or attP, and the recombinase is selected from the group consisting of a Listeria monocytogenes phage recombinase, a Streptococcus pyogenes phage recombinase, a Bacillus subtilis phage recombinase, a Mycobacterium tuberculosis phage recombinase and a Mycobacterium smegmatis phage recombinase, provided that when the first recombination attachment site is attB, the second recombination attachment site is attP and when the first recombination attachment site is attP, the second recombination attachment site is attB. The invention also describes compositions, vectors, and methods of use thereof, for the generation of transgenic cells, tissues, plants, and animals. The compositions, vectors and methods of the present invention are also useful in gene therapy applications.
Owner:PADIDAM MALLA

Solid surface with immobilized degradable cationic polymer for transfecting eukaryotic cells

InactiveUS20060134790A1Without significant loss of transfection activityBioreactor/fermenter combinationsBiological substance pretreatmentsRoom temperatureTransfection
A cell transfection / culture device is disclosed which includes a solid support coated with a degradable polymer cation as a transfection reagent. The transfection / culture device is conveniently stored at room temperature until use. Cell transfection is accomplished easily by adding the nucleic acid of interest and the cells to be transfected to the transfection / culture device. Cell transfection is completed in less than one hour by using the transfection / culture device described herein.
Owner:NITTO DENKO CORP

Dual expression vector system for antibody expression in bacterial and mammalian cells

The present invention provides a dual expression vector, and methods for its use, for the expression and secretion of a full-length polypeptide of interest in eukaryotic cells, and a soluble domain or fragment of the polypeptide in bacteria. When expressed in bacteria, transcription from a bacterial promoter within a first intron and termination at the stop codon in a second intron results in expression of a fragment of the polypeptide, e.g., a Fab fragment, whereas in mammalian cells, splicing removes the bacterial regulatory sequences located in the two introns and generates the mammalian signal sequence, allowing expression of the full-length polypeptide, e.g., IgG heavy or light chain polypeptide. The dual expression vector system of the invention can be used to select and screen for new monoclonal antibodies, as well as to optimize monoclonal antibodies for binding to antigenic molecules of interest.
Owner:MACROGENICS INC

Optimization of determinants for successful genetic correction of diseases, mediated by hematopoietic stem cells

Methods and compositions disclosed herein generally relates to methods of determining minimum hematopoietic stem cell (HSC) chimerism and gene dosage for correction of a hematopoietic disease; in particular, in in vivo models. The invention also relates to modified lentiviral expression vectors for increase a viral titer and various methods for increasing such titers as well as expression vectors capable of enhancing such titers. The invention also relates to CHS4 chromatin insulator-derived functional insulator sequences. The invention further relates to methods for genetic correction of diseases or reducing symptoms thereof, such as sickle cell anemia, a lysosomal storage disease. The invention further relates to a method of improving and / or correcting one or more central nervous system (CNS) abnormalities caused by one or more lysosomal storage disease. The invention further relates to methods of improving titer in transfection-based bioreactor culture production or transfection-based production systems using eukaryotic cells.
Owner:CHILDRENS HOSPITAL MEDICAL CENT CINCINNATI

Crispr-based genome modification and regulation

The present invention provides RNA-guided endonucleases, which are engineered for expression in eukaryotic cells or embryos, and methods of using the RNA-guided endonuclease for targeted genome modification in in eukaryotic cells or embryos. Also provided are fusion proteins, wherein each fusion protein comprises a CRISPR / Cas-like protein or fragment thereof and an effector domain. The effector domain can be a cleavage domain, an epigenetic modification domain, a transcriptional activation domain, or a transcriptional repressor domain. Also provided are methods for using the fusion proteins to modify a chromosomal sequence or regulate expression of a chromosomal sequence.
Owner:SIGMA ALDRICH CO LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products