Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

206 results about "Site-specific recombination" patented technology

Site-specific recombination, also known as conservative site-specific recombination, is a type of genetic recombination in which DNA strand exchange takes place between segments possessing at least a certain degree of sequence homology. Site-specific recombinases (SSRs) perform rearrangements of DNA segments by recognizing and binding to short DNA sequences (sites), at which they cleave the DNA backbone, exchange the two DNA helices involved and rejoin the DNA strands. While in some site-specific recombination systems just a recombinase enzyme and the recombination sites is enough to perform all these reactions, in other systems a number of accessory proteins and/or accessory sites are also needed. Multiple genome modification strategies, among these recombinase-mediated cassette exchange (RMCE), an advanced approach for the targeted introduction of transcription units into predetermined genomic loci, rely on the capacities of SSRs.

Site-specific serine recombinases and methods of their use

The present invention provides a method for obtaining site-specific recombination in a eukaryotic cell, the method comprising providing a eukaryotic cell that comprises a first recombination attachment site and a second recombination attachment site; contacting the first and second recombination attachment sites with a prokaryotic recombinase polypeptide, resulting in recombination between the recombination attachment sites, wherein the recombinase polypeptide can mediate recombination between the first and second recombination attachment sites, the first recombination attachment site is a phage genomic recombination attachment site (attP) or a bacterial genomic recombination attachment site (attB), the second recombination site is attB or attP, and the recombinase is selected from the group consisting of a Listeria monocytogenes phage recombinase, a Streptococcus pyogenes phage recombinase, a Bacillus subtilis phage recombinase, a Mycobacterium tuberculosis phage recombinase and a Mycobacterium smegmatis phage recombinase, provided that when the first recombination attachment site is attB, the second recombination attachment site is attP and when the first recombination attachment site is attP, the second recombination attachment site is attB. The invention also describes compositions, vectors, and methods of use thereof, for the generation of transgenic cells, tissues, plants, and animals. The compositions, vectors and methods of the present invention are also useful in gene therapy applications.
Owner:PADIDAM MALLA

Production of antibodies using cre-mediated site-specific recombination

A method to produce a cell expressing an antibody from a genomic sequence of the cell comprising a modified immunoglobulin locus using Cre-mediated site-specific recombination is disclosed. The method involves first transfecting an antibody-producing cell with a homology-targeting vector comprising a lox site and a targeting sequence homologous to a first DNA sequence adjacent to the region of the immunoglobulin loci of the genomic sequence which is to be converted to a modified region, so the first lox site is inserted into the genomic sequence via site-specific homologous recombination. Then the cell is transfected with a lox-targeting vector comprising a second lox site suitable for Cre-mediated recombination with the integrated lox site and a modifying sequence to convert the region of the immunoglobulin loci to the modified region. This conversion is performed by interacting the lox sites with Cre in vivo, so that the modifying sequence inserts into the genomic sequence via Cre-mediated site-specific recombination of the lox sites. Also disclosed are a form of the method used to produce a cell expressing a modified antibody molecule using Cre-mediated site-specific recombination, and antibody-producing cells obtainable by the disclosed methods. Class-switching modifications of human antibodies produced in murine hybridoma cells are exemplified.
Owner:JAPAN TOBACCO INC +1

Mobilization of viral genomes from T-DNA using site-specific recombination systems

InactiveUS20060253939A1Easy constructionSimplifying stable maintenanceBacteriaSugar derivativesSite-specific recombinationPlant cell
The invention relates to methods and compositions for site-specific recombinase-mediated mobilization of viral replicons and associated DNAs of interest from T-DNA. The methods of the invention comprise Agrobacterium-mediated transfer of T-DNA to a plant cell, wherein the T-DNA contains a viral replicon flanked by directly repeated target sites for a site-specific recombinase and optionally a DNA of interest linked to the viral replicon. The DNA of interest may also contain a non-identical target site for the recombinase. An expression cassette for the site-specific recombinase is present on the T-DNA or the plant genome, or is transiently introduced into the plant cell. Expression of the site-specific recombinase in the plant cell results in excision of the viral replicon and the associated DNA of interest. The viral replicon and DNA of interest are then replicated to high copy number in the host plant cell. The compositions of the invention comprise nucleic acids, such as T-DNAs containing a viral DNA flanked by directly repeated target sites for a site-specific recombinase. The nucleic acids of the invention may additionally contain expression cassettes encoding the cognate site-specific recombinase for the target sites flanking the viral genome. The compositions of the invention further comprise Agrobacterium containing the nucleic acids of the invention. The compositions and methods of the invention have use in increasing the efficiency of agroinfection, providing high copy numbers of a DNA of interest for transient expression or for integration into a plant chromosome, and in simplifying the construction and stable maintenance of vectors for agroinfection and transformation.
Owner:PIONEER HI BRED INT INC

Mobilization of viral genomes from T-DNA using site-specific recombination systems

InactiveUS7179599B2Simplifying construction and stable maintenanceImprove efficiencyBacteriaAntibody mimetics/scaffoldsSite-specific recombinationPlant cell
The invention relates to methods and compositions for site-specific recombinase-mediated mobilization of viral replicons and associated DNAs of interest from T-DNA. The methods of the invention comprise Agrobacterium-mediated transfer of T-DNA to a plant cell, wherein the T-DNA contains a viral replicon flanked by directly repeated target sites for a site-specific recombinase and optionally a DNA of interest linked to the viral replicon. The DNA of interest may also contain a non-identical target site for the recombinase. An expression cassette for the site-specific recombinase is present on the T-DNA or the plant genome, or is transiently introduced into the plant cell. Expression of the site-specific recombinase in the plant cell results in excision of the viral replicon and the associated DNA of interest. The viral replicon and DNA of interest are then replicated to high copy number in the host plant cell. The compositions of the invention comprise nucleic acids, such as T-DNAs containing a viral DNA flanked by directly repeated target sites for a site-specific recombinase. The nucleic acids of the invention may additionally contain expression cassettes encoding the cognate site-specific recombinase for the target sites flanking the viral genome. The compositions of the invention further comprise Agrobacterium containing the nucleic acids of the invention. The compositions and methods of the invention have use in increasing the efficiency of agroinfection, providing high copy numbers of a DNA of interest for transient expression or for integration into a plant chromosome, and in simplifying the construction and stable maintenance of vectors for agroinfection and transformation.
Owner:PIONEER HI BRED INT INC

Method for constructing recombinant expression vector simultaneously expressing a plurality of genes

InactiveCN101979596ATime-saving multigene assembly methodLow costFungiBacteriaBiotechnologySite-specific recombination
The invention discloses a method for constructing a recombinant expression vector simultaneously expressing a plurality of genes. An MISSA system consists of a strain and a vector, wherein the strain comprises a donor strain and an acceptor strain; the vector comprises a donor vector and an acceptor vector; replication initiation protein carried by a chromosome of the donor strain is responsible for replicating and amplifying a suicidal donor vector, and the carried conjugal transfer protein Tra is responsible for conjugal transfer of the donor vector; the acceptor strain can induce and express two sets of locus specific recombinant proteins, namely Cre recombinant enzyme and lambda phage locus specific recombinant proteins; when the donor strain is mixed with the acceptor strain, the donor strain and the acceptor strain are conjugated, and the donor strain is transferred into the acceptor vector because the donor vector in the donor strain carries an oric element; and the donor vector and the acceptor vector undergo recombination reaction in the acceptor strain under the action of the two sets of locus specific recombinant proteins, so that a target gene carried by the donor vector is assembled onto the acceptor vector. The process is repeated, so a plurality of target genes can be assembled onto the acceptor vector according to the preset direction and order.
Owner:CHINA AGRI UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products