Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

4104 results about "Lambda" patented technology

Lambda (uppercase Λ, lowercase λ; Greek: λάμ(β)δα lám(b)da) is the 11th letter of the Greek alphabet, representing the sound /l/. In the system of Greek numerals lambda has a value of 30. Lambda is derived from the Phoenician Lamed . Lambda gave rise to the Latin L and the Cyrillic El (Л). The ancient grammarians and dramatists give evidence to the pronunciation as [laːbdaː] (λάβδα) in Classical Greek times. In Modern Greek the name of the letter, Λάμδα, is pronounced [lamða].

Laminated retardation optical element, process of producing the same, and liquid crystal display

The present invention provides a laminated retardation optical element that never lowers contrast and thus never degrades display performance even when placed between a liquid crystal cell and a lambda/4 retardation film. In a liquid crystal display 90, a laminated retardation optical element 10 is placed between a polarizer 102A on the incident side and a liquid crystal cell 104, and a lambda/4 retardation film 102C is placed between a polarizer 102B on the emergent side and the liquid crystal cell 104. The laminated retardation optical element 10 comprises: a lambda/4 retardation layer 14 having the function of bringing, to light that passes through this retardation layer, a phase difference corresponding to a quarter of the wavelength of the light; and a C plate-type retardation layer 16 that acts as a negative C plate. The lambda/4 retardation layer 14 and the C plate-type retardation layer 16 are laminated to a transparent substrate 12 in the order mentioned, and are optically bonded to each other. The lambda/4 retardation layer 14 comprises as its main component a horizontally-aligned, cross-linked nematic liquid crystal, while the C plate-type retardation layer 16 comprises as its main component a cross-linked chiral nematic liquid crystal (a cross-linked nematic liquid crystal and a cross-linked chiral agent) or cross-linked discotic liquid crystal.
Owner:DAI NIPPON PRINTING CO LTD

Mobile robot path planning algorithm based on single-chain sequential backtracking Q-learning

The invention provides a mobile robot path planning algorithm based on single-chain sequential backtracking Q-learning. According to the mobile robot path planning algorithm based on the single-chain sequential backtracking Q-learning, a two-dimensional environment is expressed by using a grid method, each environment area block corresponds to a discrete location, the state of a mobile robot at some moment is expressed by an environment location where the robot is located, the search of each step of the mobile robot is based on a Q-learning iterative formula of a non-deterministic Markov decision process, progressively sequential backtracking is carried out from the Q value of the tail end of a single chain, namely the current state, to the Q value of the head end of the single chain until a target state is reached, the mobile robot cyclically and repeatedly finds out paths to the target state from an original state, the search of each step is carried out according to the steps, and Q values of states are continuously iterated and optimized until the Q values are converged. The mobile robot path planning algorithm based on the single-chain sequential backtracking Q-learning has the advantages that the number of steps required for optimal path searching is far less than that of a classic Q-learning algorithm and a Q(lambda) algorithm, the learning time is shorter, and the learning efficiency is higher; and particularly for large environments, the mobile robot path planning algorithm based on the single-chain sequential backtracking Q-learning has more obvious advantages.
Owner:SHANDONG UNIV

Characterization of highly scattering media by measurement of diffusely backscattered polarized light

An apparatus and method for recording spatially dependent intensity patterns of polarized light that is diffusely backscattered from highly scattering media are described. These intensity patterns can be used to differentiate different turbid media, such as polystyrene-sphere and biological-cell suspensions. Polarized light from a He-Ne laser ( lambda =543 nm) is focused onto the surface of the scattering medium, and a surface area of approximately 4x4 cm centered on the light input point is imaged through polarization analysis optics onto a CCD camera. A variety of intensity patterns may be observed by varying the polarization state of the incident laser light and changing the analyzer configuration to detect different polarization components of the backscattered light. Experimental results for polystyrene-sphere and Intralipid suspensions demonstrate that the radial and azimuthal variations of the observed pattern depend on the concentration, size, and anisotropy factor, g, of the particles constituting the scattering medium. Measurements performed on biological cell suspensions show that intensity patterns can be used to differentiate between suspensions of cancerous and non-cancerous cells. Introduction of the Mueller-matrix for diffusely backscattered light, permits the selection of a subset of measurements which comprehensively describes the optical properties of backscattering media.
Owner:LOS ALAMOS NATIONAL SECURITY

Port-to-port, non-blocking, scalable optical router architecture and method for routing optical traffic

Embodiments of the present invention provide an optical network and switch architecture that provides non-blocking routing from an ingress router to an egress router in the network on a port-to-port basis. The present invention provides routing for fixed and variable length optical data packets of varying types (including Internet Protocol (IP), data, voice, TDM, ATM, voice over data, etc.) at speeds from sub-Terabit per second (Tbps), to significantly in excess of Petabit per second (Pbps). The present invention includes the functionality of both large IP routers and optical cross-connects combined with a unique, non-blocking optical switching and routing techniques to obtain benefits in speed and interconnected capacity in a data transport network. The present invention can utilize a TWDM wave slot transport scheme in conjunction with a just-in-time scheduling pattern and a unique optical switch configuration that provides for non-blocking transport of data from ingress to egress.One embodiment of the present invention includes a router comprising an ingress edge unit with one or more ports and an egress edge unit with one or more ports connected by a switch fabric. The ingress edge unit can receive optical data and convert the optical data into a plurality of micro lambdas, each micro lambda containing data destined for a particular egress edge port. The ingress edge unit can convert the incoming data to micro lambdas by generating a series of short-term parallel data bursts across multiple wavelengths. The ingress edge unit can also wavelength division multiplex and time domain multiplex each micro lambda for transmission to the switch fabric in a particular order. The switch fabric can receive the plurality of micro lambdas and route the plurality of micro lambdas to the plurality of egress edge units in a non-blocking manner. The router can also include a core controller that receives scheduling information from the plurality of ingress edge units and egress edge units. Based on the scheduling information, the core controller can develop a schedule pattern (i.e., a TWDM cycle) to coordinate the time domain multiplexing of micro lambdas at the plurality of ingress edge units and non-blocking switching of the micro lambdas at the switch fabric.
Owner:MIND FUSION LLC

Carrier smoothing code pseudorange technology-based dynamic attitude positioning method

InactiveCN101825717AHigh precisionOvercoming the disadvantages of decreased success rateSatellite radio beaconingAlgorithmAmbiguity
The invention discloses a carrier smoothing code pseudorange technology-based dynamic attitude positioning algorithm method, which comprises the following steps of: (1) detecting whether cycle slip occurs in the current epoch by using a three-difference method, if so, using the code observation of the current epoch, otherwise, acquiring the smoothed code observation by using Hatch filtering and recording the smoothing window length k; (2) solving the floating solution of the integer ambiguity and the variance-covariance matrix of the floating solution by utilizing the code observation and the code observation of the current epoch; (3) taking the floating solution of the integer ambiguity and the variance-covariance matrix of the floating solution as initial parameters, substituting the initial parameters into an LAMBDA algorithm for solving the fixed solution of the ambiguity, and acquiring former N ambiguity candidate values; and (4) performing the ambiguity test on the former N ambiguity candidate values in turn, until the ambiguity candidate solution meeting the constraint condition is found, and solving the obtained attitude angle. The carrier smoothing code pseudorange technology-based dynamic attitude positioning algorithm method does not have the problem of initialization time, can be effectively used for real-time dynamic attitude measurement, and can self-adaptively regulate the smoothing window length and the ambiguity candidate solution space aiming at the occurrence of the cycle slip. Therefore, the success rate and the overall efficiency of the algorithm are improved.
Owner:BEIHANG UNIV

Low-profile dual-polarization dipole base station antenna loaded with AMC reflecting plate

The invention discloses a low-profile dual-polarization dipole base station antenna loaded with an AMC reflecting plate. The antenna comprises a dual-polarization planar dipole antenna, four plastic support columns and the AMC reflecting plate. The dual-polarization planar dipole antenna comprises coupling microstrip lines, an upper dielectric plate, a radiating structure and coaxial lines from top to bottom in sequence; the AMC reflecting plate comprises a rectangular patch, a lower dielectric plate, an air dielectric, metal support columns and a metal plate which are periodically arranged from top to bottom in sequence, the coupling microstrip lines and the radiating structure are located on the upper side and the lower side of the upper dielectric plate in the same placing direction, and + / -45-degree dual-polarization is achieved in a coaxial line feeding mode. The dual-polarization planar dipole antenna is fixed to the AMC reflecting plate through the plastic support columns. Accordingly, the AMC reflecting plate is adopted for replacing an original metal reflecting plate, the antenna profile height is lowered to 0.132 lambda 2.2 GHz from 0.264 lambda 2.2 GHz, and meanwhile the advantages of being wide in frequency band, high in isolation, low in cross polarization, low in cost and the like are reserved. The application requirement of the current communication industry is met, and the low-profile dual-polarization dipole base station antenna conforms to the development trend of miniaturization of current base station antennae and has practical reference value.
Owner:CHONGQING UNIV OF POSTS & TELECOMM
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products