Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1524 results about "Path plan" patented technology

Real-time guidance method for bus taking navigation

The invention discloses a real-time guidance method for bus taking navigation and belongs to the technical field of intelligent traffic. The method comprises the following steps: determining an origin, a destination and departing time; carrying out path planning according to the coordinates of the origin and the destination, and obtaining the time cost of each road section in the path planning according to the departing time and a path planning result in combination with dynamic traffic data; correcting the time cost of each road section according to the actual departing time and the current position of a user and utilizing characters, voice and/or graphical representations to carry out real-time guidance at each road section. On the basis of providing the character and map demonstration of the path planning result, the real-time guidance method can further provide the progress bar of journey stages and expected time for arriving at each stage point, and can also provide a whole-journey real-time guidance function. The real-time guidance method has the advantages of simple and visual journey demonstration, timely and accurate prompt, and safety and convenience in use. The use convenience of passengers in navigation is greatly improved, and the occurrence of accidents is reduced when navigation equipment is used during motion.
Owner:BEIJING PALMGO INFOTECH CO LTD

Path planning Q-learning initial method of mobile robot

The invention discloses a reinforcing learning initial method of a mobile robot based on an artificial potential field and relates to a path planning Q-learning initial method of the mobile robot. The working environment of the robot is virtualized to an artificial potential field. The potential values of all the states are confirmed by utilizing priori knowledge, so that the potential value of an obstacle area is zero, and a target point has the biggest potential value of the whole field; and at the moment, the potential value of each state of the artificial potential field stands for the biggest cumulative return obtained by following the best strategy of the corresponding state. Then a Q initial value is defined to the sum of the instant return of the current state and the maximum equivalent cumulative return of the following state. Known environmental information is mapped to a Q function initial value by the artificial potential field so as to integrate the priori knowledge into a learning system of the robot, so that the learning ability of the robot is improved in the reinforcing learning initial stage. Compared with the traditional Q-learning algorithm, the reinforcing learning initial method can efficiently improve the learning efficiency in the initial stage and speed up the algorithm convergence speed, and the algorithm convergence process is more stable.
Owner:山东大学(威海)

Mobile robot path planning algorithm based on single-chain sequential backtracking Q-learning

The invention provides a mobile robot path planning algorithm based on single-chain sequential backtracking Q-learning. According to the mobile robot path planning algorithm based on the single-chain sequential backtracking Q-learning, a two-dimensional environment is expressed by using a grid method, each environment area block corresponds to a discrete location, the state of a mobile robot at some moment is expressed by an environment location where the robot is located, the search of each step of the mobile robot is based on a Q-learning iterative formula of a non-deterministic Markov decision process, progressively sequential backtracking is carried out from the Q value of the tail end of a single chain, namely the current state, to the Q value of the head end of the single chain until a target state is reached, the mobile robot cyclically and repeatedly finds out paths to the target state from an original state, the search of each step is carried out according to the steps, and Q values of states are continuously iterated and optimized until the Q values are converged. The mobile robot path planning algorithm based on the single-chain sequential backtracking Q-learning has the advantages that the number of steps required for optimal path searching is far less than that of a classic Q-learning algorithm and a Q(lambda) algorithm, the learning time is shorter, and the learning efficiency is higher; and particularly for large environments, the mobile robot path planning algorithm based on the single-chain sequential backtracking Q-learning has more obvious advantages.
Owner:SHANDONG UNIV

Method for planning and executing obstacle-free paths for rotating excavation machinery

This invention concerns the control of rotating excavation machinery, for instance to avoid collisions with obstacles. In a first aspect the invention is a control system for autonomous path planning in excavation machinery, comprising: A map generation subsystem to receive data from an array of disparate and complementary sensors to generate a 3-Dimensional digital terrain and obstacle map referenced to a coordinate frame related to the machine's geometry, during normal operation of the machine. An obstacle detection subsystem to find and identify obstacles in the digital terrain and obstacle map, and then to refine the map by identifying exclusion zones that are within reach of the machine during operation. A collision detection subsystem that uses knowledge of the machine's position and movements, as well as the digital terrain and obstacle map, to identify and predict possible collisions with itself or other obstacles, and then uses a forward motion planner to predict collisions in a planned path. And, a path planning subsystem that uses information from the other subsystems to vary planned paths to avoid obstacles and collisions. In other aspects the invention is excavation machinery including the control system; a method for control of excavation machinery; and firmware and software versions of the control system.
Owner:COMMONWEALTH SCI & IND RES ORG

Unmanned ship water surface target detection, identification and positioning method based on monocular camera and lidar information fusion

The invention belongs to the field of intelligent unmanned intelligent ships, and relates to an unmanned ship water surface target detection, identification and positioning method based on monocular camera and lidar information fusion. The detection, identification and positioning of a water surface target by an unmanned ship are influenced by distances and the fluctuation of the target, so that alidar and a monocular camera are integrated to accurately detect, identify and position the target within a sensing range. According to the method, acquired water surface target images are adopted totrain a neural network-based target detection and recognition model; the lidar employs a conditional removal filter and Euclidean clustering to obtain the position of the water surface target in a world coordinate system; and finally, a camera image information and lidar information fusion method is designed, and therefore, the method is highly robust to uncertain factors. With the method adopted, the unmanned ship is capable of accurately detecting, identifying and positioning the water surface target; and good environment perception can be realized for the target tracking, path planning andautonomous navigation of the unmanned ship. The method has a broad application prospect.
Owner:HARBIN ENG UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products