Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

669 results about "Inverse kinematics" patented technology

Inverse kinematics is the mathematical process of recovering the movements of an object in the world from some other data, such as a film of those movements, or a film of the world as seen by a camera which is itself making those movements. This is useful in robotics and in film animation.

Genetic-algorithm-based trajectory planning optimization method for mobile mechanical arm

ActiveCN103235513AExcellent exercise timeReduce wearAdaptive controlMathematical modelCurve fitting
The invention relates to a genetic-algorithm-based trajectory planning optimization method for a mobile mechanical arm. According to the technical scheme, the method comprises the following steps of first establishing a forward kinematic model and an inverse kinematic model of a multi-degree-of-freedom mobile mechanical arm; then fitting a joint trajectory by adopting a composite curve of a quartic polynomial mathematical model and a quintic polynomial mathematical model, and calculating solutions of the corresponding mathematical models according to a linear constraint equation; next selecting a trajectory optimization target according to the principles of shortest motion time, minimum spatial motion distance and less than or equal to maximum set joint torque of the mobile mechanical arm; and finally globally optimizing the optimization target by utilizing a genetic algorithm to obtain an optimal trajectory curve of an end actuator of the mechanical arm. According to the method, the trajectory planning efficiency and the tracking accuracy of the mechanical arm are improved, and the problems of real-time trajectory planning of the mobile mechanical arm and trajectory planning optimization and control of the mechanical arm in an uncertain environment are also solved; and the trajectory planning optimization method for the mobile mechanical arm is effective.
Owner:WUHAN UNIV OF SCI & TECH

Control method, equipment, system and construction machinery for multi-joint mechanical arm support

The invention discloses a control method, equipment, a system, and construction machinery for a multi-joint mechanical arm support. The control method mainly comprises the steps that a moving track path of the tail end of the mechanical arm support is divided into a plurality of sub track paths; aiming at each sub track path, the length value that the tail end of the mechanical arm support can move within a set duration, and current position information of each joint of the mechanical arm support is collected to calculate the required moving angle information of each joint of the mechanical arm support under the position information of subgoals capable of being reached by the tail end of the mechanical arm support; the obtained angle information of each joint in converted into control instructions, so that each joint of the mechanical arm support is controlled to move; the track path of the tail end of the mechanical arm support is subjected to discrete programming; and aiming at the sub track paths after programming, the moving angle information of each other joint of the mechanical arm support are determined according to the inverse kinematic principle. Therefore, the operation stability of the tail end of the arm support is guaranteed sufficiently, and the control precision for the tail end of the multi-joint mechanical arm support is improved.
Owner:ZOOMLION HEAVY IND CO LTD

Hot-line work robot control system based on dual mechanical arms and auxiliary arm

The invention provides a hot-line work robot control system based on dual mechanical arms and an auxiliary arm. The first mechanical arm, the second mechanical arm and the auxiliary mechanical arm each carry a binocular camera; the binocular cameras are used for acquiring operation scene images of the mechanical arms and sending the operation scene images to a data process and control system; the data process and control system plans a mechanical arm spatial path according to the operation scene images; according to a specific method, the tail end positions of the mechanical arms and an operation target position are converted into a same reference coordinate system, and the coordinate difference between the tail end positions of the mechanical arms and the operation target position under the same reference coordinate system is acquired; and according to the coordinate difference, the angle expected value of each joint of the mechanical arms is solved out through an inverse kinematic computing method. According to the hot-line work robot control system based on the dual mechanical arms and the auxiliary arm, based on a method in which binocular vision is combined with coordinate conversion, the mechanical arms are autonomously controlled to complete the hot-line work target of a distribution line, the labor intensity of operation personnel is relieved, and safety is improved.
Owner:NANJING UNIV OF SCI & TECH

Inverse kinematics solution method for six-degree-of-freedom serial robot

ActiveCN102637158AAvoid problems with rank less than orderIngenious ideaComplex mathematical operationsRobot kinematicsTabu search
The invention discloses an inverse kinematics solution method for a six-degree-of-freedom serial robot. The inverse kinematics solution method comprises the steps of: establishing a connecting rod coordinate system and setting variables theta 1, theta 2, theta 3, theta 4, theta 5 and theta 6; setting an initial configuration; solving theta 4, theta 5 and theta 6 by utilizing a geometric method; and eliminating theta 1, theta 2 and theta 3 by utilizing an algebra elimination method and introducing a tabu search algorithm when solving a non-orthogonal spheroid or the terminal structure of the non-orthogonal spheroid, thereby solving out corresponding numerical solutions. The inverse kinematics solution method is smart in conception and utilizes the geometric method and the algebra elimination method for comprehensive solution, thereby avoiding the problem that the rank of an equation determinant of coefficient is smaller than order caused by arbitrary establishing of equations and correctly obtaining the analytic solutions of six axes efficiently; and for complex-structure trigonometric function relationship, a linear equation in two unknowns can be effectively transformed to a linear equation with one unknown by the elimination method in the use of the geometric method, and therefore a unique corresponding analytic solution is obtained.
Owner:CHENGDU CRP ROBOT TECH CO LTD

Method for actually compensating for geometrical errors of five-axis numerical control tooth manufacturing machine tool through inverse kinematics

The invention provides a method for actually compensating for geometrical errors of a five-axis numerical control tooth manufacturing machine tool through the inverse kinematics. The method includes the steps of building a space geometrical error model containing position unrelated errors and position related errors on the basis of a homogeneous coordinate transformational matrix, and deducing a processing code analytical expression containing the geometrical errors from the space geometrical error model according to the characteristics of the homogeneous coordinate transformational matrix. Theoretical cutter location data is modified by 12 pose deviations (6 static pose deviations and 6 movement pose deviations) of a cutter relative to a workpiece. The geometrical errors of the machine tool can be compensated for by substituting the position unrelated errors, the position related errors and the modified cutter location data into the processing code analytical expression for compensating for the geometrical errors of the machine tool, and meanwhile the12 pose deviations of the cutter relative to the workpiece are modified. The error compensation method is simple in compensation process, easy to understand, small in calculation amount, high in compensation efficiency and wide in application range, and the basic compensation concept of the method is suitable for numerical control machine tools of various types.
Owner:NANJING GONGDA CNC TECH

Method for uniquely solving inverse kinematics numerical value of joint type mechanical arm

ActiveCN109895101AOvercoming the requirement of full rankSimple modeling methodProgramme-controlled manipulatorJoints typesEngineering
The invention discloses a method for uniquely solving the inverse kinematics numerical value of the joint type mechanical arm, belongs to the technical field of modern intelligent manufacturing, relates to the technical field of industrial robots, relates to a method for uniquely solving the inverse kinematics numerical value of a joint type six-degree-of-freedom mechanical arm with shoulder joints facing forward. According to the method, a mechanical arm joint coordinate system is built according to an improved DH parameter method, four structural geometrical parameters between adjacent joints of the mechanical arm are determined, a homogeneous coordinate transformation matrix of two adjacent coordinate systems is calculated. For a given pose matrix of a tail end coordinate system O6, animproved newton iteration method, namely a Levenberg marquardt iterative algorithm is adopted, the inverse kinematics solution of the joint coordinate system is calculated by using a jacobian matrix J, and the six joint rotation angle values theta i which correspond to the pose matrix and meet the precision requirement are obtained. The method overcomes the requirement that a traditional newton iteration method needs to fully rank the jacobian matrix j, the modeling method is simple, clear and effective, the method has the characteristics of being high in solving precision, high in solving speed and simple and feasible in solving process.
Owner:DALIAN UNIV OF TECH

Redundancy dual-mechanical-arm multi-index coordinate exercise planning method

The invention discloses a redundancy dual-mechanical-arm multi-index coordinate exercise planning method. The method includes the steps that (1) based on a target problem, quadric form prioritization schemes are adopted for an upper computer to conduct inverse kinematics analysis on double mechanical arms on the speed layer, designed performance indexes are formed by the weighted array of three indexes including a minimum velocity two-norm, repeating motion and a minimum velocity infinite norm, and the performance indexes are limited to the kinematical equations, the joint angle extremities and the joint angle velocity extremities of the double mechanical arms correspondingly; (2) the quadric form prioritization schemes of the double mechanical arms in the step (1) are converted into standard quadratic programming problems; (3) the quadratic programming problems of the double mechanical arms in the step (2) are unified into one quadratic programming problem; (4) the unified quadratic programming problem in the step (3) is solved with a simplified original dual neural network solver based on the linear variational inequality; and (5) a solving result in the step (4) is transmitted to a lower computer controller to drive the double mechanical arms to move.
Owner:SOUTH CHINA UNIV OF TECH

Dynamic obstacle avoidance path planning method of seven-degree-of-freedom redundant mechanical arm based on fast random search tree

ActiveCN109571466AAvoid the problem of target state uncertaintyProgramme-controlled manipulatorComputation complexityDegrees of freedom
The invention discloses a dynamic obstacle avoidance path planning method of a seven-degree-of-freedom redundant mechanical arm based on a fast random search tree. The dynamic obstacle avoidance pathplanning method of the seven-degree-of-freedom redundant mechanical arm based on the fast random search tree comprises the steps of offline planning and online planning, the offline planning uses an analytic solution method of inverse kinematics of a redundant mechanical arm to determine an optimal target state to be regarded as a target node to construct a search tree, the online planning is to extend and rewire the search tree according to the current environment, a path from the target node to a root node is obtained in real time, when the mechanical arm moves, the root node of the tree changes, and if the target node is blocked by an obstacle, the target node is switched, and a new path is searched to avoid the dynamic obstacle. According to the dynamic obstacle avoidance path planningmethod of the seven-degree-of-freedom redundant mechanical arm based on the fast random search tree, through the offline planning and the online planning, the problem that RRT* cannot be used for theredundant mechanical arm real-time obstacle avoidance due to the high computational complexity of the RRT* is solved, by updating the root node and the target node of the search tree in real time, the problem that the target node in the dynamic environment is unreachable is solved, and a collision-free path is planned for the mechanical arm in real time.
Owner:ZHEJIANG UNIV

Industrial robot space intersecting curve welding offline programming method

The invention discloses an industrial robot space intersecting curve welding offline programming method. The method comprises the steps that firstly, an arc welding robot and a welding workpiece three-dimensional model are guided in, two peripheral hook faces of a welding line are formed through mouse pickup, a cut plane set is created inside a workpiece coordinate system, and node pose information of the welding line is extracted; according to the node pose, position and posture discretization are achieved along the curve of the welding line, and then welding line trajectory planning is achieved through coordinate conversion; then, a joint angle sequence needed in the robot motion process is obtained through robot inverse kinematics, and motion simulation is achieved; finally, according to language rules written by corresponding robot motion control program codes, a corresponding program file is generated. By adopting an open source VTK visual tool magazine, offline programming independent development is achieved, the method does not dependent on third party CAD software, the track of the welding line can be generated only through mouse picking, no complex external data computingor guiding-in process is needed, the man-machine interaction is good, and the needed robot program can be rapidly generated.
Owner:NANJING INST OF TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products