Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

4700 results about "Industrial robot" patented technology

An industrial robot is a robot system used for manufacturing. Industrial robots are automated, programmable and capable of movement on three or more axis. Typical applications of robots include welding, painting, assembly, disassembly, pick and place for printed circuit boards, packaging and labeling, palletizing, product inspection, and testing; all accomplished with high endurance, speed, and precision. They can assist in material handling.

Method and system for assembling robot based on visual sense and force feedback control

The invention discloses a system for assembling a robot based on visual sense and force feedback control. The system comprises an industrial robot, a workpiece contour detection unit, an assembling force detection unit, a clamping unit and a system control host machine, wherein the industrial robot is used for driving the tail end to move according to a control command of the system control host machine; the assembling force detection unit is used for acquiring the contact force between a shaft workpiece and a hole during the assembling process; the clamping unit is used for clamping the shaft workpiece; the workpiece contour detection unit is used for acquiring the measured data of workpiece contour; the system control host machine is used for receiving the position and the force data and positioning the assembled workpiece according to received data so as to generate the control command to be sent to the industrial robot. The invention further discloses a method for assembling the robot based on visual sense and force feedback control. Rapid hole positioning is carried out and the optimal path of assembling is planned according to the three-dimensional data of hole contour and the force feedback data when the axle hole is assembled, and thus high-precision self-assembling of the axle hole is realized.
Owner:INST OF AUTOMATION CHINESE ACAD OF SCI

System and method for grinding industrial robot on basis of visual information

The invention relates to a system and a method for grinding an industrial robot on the basis of visual information. In the system, the image of a workpiece is collected by a video camera; the workpiece is positioned by computer recognition; the movement locus points of a mechanical arm from the current position to a fetching position are planned on line to control the mechanical arm to fetch the workpiece; and then, the revolving speed and the revolving direction of an abrasive belt are controlled by a preset operation step of grinding so as to control the industrial robot to move the workpiece to an appointed position and gesture for grinding and polishing the workpiece. In the system, the video camera collects the image of the workpiece in real time; the workpiece is identified and positioned by the computer to control the mechanical arm to fetch the workpiece; the movement of the industrial robot and the running state of a grinder in the workpiece grinding operation are controlled; the data end of a computer is connected with the data end of the control cabinet of the industrial robot; output locus points controls the industrial robot to move; and the data end of the computer is connected with the data end of the grinder to control the grinder to start and stop and control the revolving speed and the revolving direction of the abrasive belt.
Owner:INST OF AUTOMATION CHINESE ACAD OF SCI

Industrial robot-based assembly method and device of piston, piston pin and connecting rod

The invention relates to an industrial robot-based assembly method and device of a piston, a piston pin and a connecting rod. The method of the invention comprises the following steps: a vision camera is used to identify the positions and directions of the piston, piston pin and connecting rod, the grabing positions are calculated by a computer, a mechanical paw grabs the piston, the piston pin and the connecting rod to place on an intelligent assembly table; the connecting rod is inserted in the piston under the control of the intelligent assembly table; an industrial robot places the piston pin in a piston assembly hole; the vision camera in the device identifies and positions the piston, piston pin and connecting rod on a work platform; the data terminal of the industrial robot is connected with the data terminal of the computer; the vision camera is connected with the computer; the industrial robot controls the mechanical paw to grab the piston, piston pin and connecting rod and place on the intelligent assembly table; the serial signal line of the intelligent assembly table is connected with the computer, the control circuit board of the intelligent assembly table controls a connecting rod jig to insert the connecting rod in the piston; and the industrial robot assembles the piston pin in the piston assembly hole according to the sensorless assembly method.
Owner:INST OF AUTOMATION CHINESE ACAD OF SCI

Industrial robot collision detection method

ActiveCN104985598AWorking conditions without any restrictionsWorking condition limitProgramme-controlled manipulatorCollision detectionEngineering
The invention discloses an industrial robot collision detection method. By the adoption of a collision detection method based on torque difference, in a robot operation process, theoretical torque values of joints are predicted in real time according to a movement track, and differences between the theoretical torque values of the joints and actual sampled torque values of the joints are calculated in real time. When the torque differences exceed a collision threshold, it is regarded that collision happens, a motor stops running immediately, and a robot stops moving. According to the method, a sensor does not need to be additionally arranged, the structure of the robot does not need to be changed, the method is suitable for any operation working condition of the robot, and there is no limit on the working conditions. The whole process is carried out off-line, people only need to use prediction results in online programs of collision detection, the programs are simple, and the execution efficiency is high. According to the method, the predicted torque of the joints is delayed by N cycles and processed, the actual torque is filtered through an average value, and then the torque differences are solved so that the collision threshold can be reduced, and sensitivity of the collision detection is improved.
Owner:NANJING ESTUN ROBOTICS CO LTD

Physical coordinate positioning method based on binocular vision

The invention discloses a physical coordinate positioning method based on binocular vision. The physical coordinate positioning method comprises the following steps: S1) setting a left camera and a right camera, establishing a coordinate system of a camera model, and obtaining a conversion relationship between the coordinate system of the camera model and a world coordinate system; S2) extracting a feature point, and obtaining a pixel coordinate of the feature point in a left image and a right image; and S3) calculating a space coordinate of the feature point in the world coordinate system. The left camera and the right camera are used for simulating two eyes, the coordinate system conversion model is established, then, each image shot by the two cameras is subjected to feature point extraction and pixel coordinate calculation, the pixel coordinate is converted into a theoretical coordinate of the camera model, and finally, the space coordinate of a target point is calculated. Measurement accuracy and efficiency is improved, and binocular coordinate positioning can have a better application prospect in the fields including an eye-in-hand system of an industrial robot, industrial cutting, logistics transportation business, packaging business, optical detection and processing and the like.
Owner:INST OF INTELLIGENT MFG GUANGDONG ACAD OF SCI

Industrial robot safety protection intelligent control method and system

The invention discloses an industrial robot safety protection intelligent control method and system. The method comprises the following steps that a detection image of a preset area around a robot is taken; to-be-detected target recognition is carried out on the current detection image; if a target to be detected is recognized in the current detection image, the current position and the current distance between the target to be detected and the robot are computed according to preset parameters; the current position and the current distance are stored in a time shaft module according to the time sequence; according to the current distance, the current position and the former distance and former position of the former time in the time shaft module, the moving speed of the target to be detected is computed; according to the current position, current distance and the moving speed of the target to be detected and the moving state data of the robot, the safe judgment relation between the target to be detected and the preset dangerous area as well as between the target to be detected and the preset safe area is determined; the robot is controlled to normally operate or stop operating or change a path according to the safe judgment relation. The safety of staff can be effectively ensured.
Owner:ZHUHAI GREE INTELLIGENT EQUIP TECH RES INST CO LTD +1

Simulation method and device of digital twin system of industrial robot

The invention provides a simulation method and device of a digital twin system of an industrial robot. The simulation device comprises the industrial robot, a vision perception unit and a computer, wherein the vision perception unit is arranged at the tail end of the robot and is composed of a camera and a wire structure light emitter; an industrial robot simulation system is established, the robot is modeled, and three instructions are analyzed and run; a target three-dimensional measurement model of a robot visual system is acquired by using a wire structure optical geometric triangular method; a motion instruction is determined for the working task of the robot, virtual simulation is carried out through the computer, and reachable points and collision point detection are carried out; and the robot is actually used for identifying a target object through the visual perception unit, and the actual movement of the robot is driven. The simulation device is safe and reliable in virtual simulation, abnormal operation possibly in actual operation is avoided, the visual perception unit is used for identifying the target object through three-dimensional visual technology, the self-adaptive capacity of the robot to the field environment is improved, and flexibility and intelligence are enhanced.
Owner:XI AN JIAOTONG UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products