Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

1573 results about "Robot controller" patented technology

Systems and methods for the destruction of adipose tissue

Described is a system and method for the destruction of adipose tissue using an energy applicator such as a HIFU transducer. The system has a scan head containing an energy applicator, a mechanical arm for carrying the weight of the scan head, and a therapy controller such as a computer for controlling the operation of the scan head. The therapy controller may be part of a general purpose computer, and may be used as a robotic controller to automate the procedure. Methods are included for destroying adipose tissue in a quick, non-invasive manner.
Owner:LIPOSONIX

Autonomous Environmental Control System and Method For Post-Capture and Pre-Launch Management of an Unmanned Air Vehicle

An embodiment of the invention is directed to a system for controlling and managing a small unmanned air vehicle (UAV) between capture and launch of the UAV. The system includes an enclosure that provides environmental protection and isolation for multiple small UAVs in assembled and / or partially disassembled states. Control and management of the UAVs includes reorientation of a captured UAV from a landing platform and secure hand-off to the enclosure, decontamination, de-fueling, ingress to the enclosure, downloading of mission payload, UAV disassembly, stowage, retrieval and reassembly of the UAV, mission uploading, egress of the UAV from the enclosure, fueling, engine testing and launch readiness. An exemplary system includes two or more robots controlled by a multiple robot controller for autonomously carrying out the functions described above. A modular, compact, portable and autonomous system of UAV control and management is described.
Owner:LOCKHEED MARTIN CORP

System and method for servoing robots based upon workpieces with fiducial marks using machine vision

A system and method for servoing robot marks using fiducial marks and machine vision provides a machine vision system having a machine vision search tool that is adapted to register a pattern, namely a trained fiducial mark, that is transformed by at least two translational degrees and at least one mon-translational degree of freedom. The fiducial is provided to workpiece carried by an end effector of a robot operating within a work area. When the workpiece enters an area of interest within a field of view of a camera of the machine vision system, the fiducial is recognized by the tool based upon a previously trained and calibrated stored image within the tool. The location of the work-piece is derived by the machine vision system based upon the viewed location of the fiducial. The location of the found fiducial is compared with that of a desired location for the fiducial. The desired location can be based upon a standard or desired position of the workpiece. If a difference between location of the found fiducial and the desired location exists, the difference is calculated with respect to each of the translational axes and the rotation. The difference can then be further transformed into robot-based coordinates to the robot controller, and workpiece movement is adjusted based upon the difference. Fiducial location and adjustment continues until the workpiece is located the desired position with minimum error.
Owner:COGNEX TECH & INVESTMENT

Instrument-mounted tension sensing mechanism for robotically-driven medical instruments

A tension mechanism for a robotically-controlled medical device measures the tension applied to an actuation tendon to provide feedback to a robotic controller. In one embodiment, the device comprises an elongated instrument, an elongated member, and a base. The elongated member is coupled to the distal end of the elongated instrument, configured to actuate the distal end of the elongated instrument in response to tension in the elongated member. The base is located at the proximal end of the elongated instrument, and comprises a first redirect surface that redirects the elongated member. The first redirect surface is coupled to a lever element that is configured to exert a reactive force on a sensor in response to tension in the elongated member.
Owner:AURIS HEALTH INC

Device for improving the accuracy of manual operations

A hand held robotic system that remains stiff so long as it is operating within allowed limits, but which become actively controlled once the operator exceeds those limits. The system thus corrects deviations by more than a predetermined amount of the operator's hand motions, so that the tool remains in the allowed region even when the operator's hand deviates from the planned trajectory. The pose and path of the robotic operating head is ascertained by means of a navigation or tracking system, or by means of a proximity device to measure the closeness of the operating head to a damage sensitive feature. As the tool deviates from its predetermined path or pose, or comes too close to the hazardous area, the robot control acts to move the tool back to its predetermined pose or path, or away from the hazardous region, independently of user's hand movement.
Owner:MAZOR ROBOTICS

Driver-mounted torque sensing mechanism

A robotically-controlled drive unit includes a torque sensing mechanism to measure the torque applied to a rotatable body that is configured to tension an actuation tendon to operate robotic surgical tools and catheters. The drive unit includes a motor unit that generates an output torque in response to a robotic control signal. A beam element generates a reactive torque in response to the output torque generated by the rotor, and a force sensor detects the reactive torque and communicates the magnitude of the reactive torque to a robotic controller. The drive unit may further include a mechanism to perform bi-directional torque sensing, examples of which include additional force sensors and compression springs.
Owner:AURIS SURGICAL ROBOTICS

Intelligent robot welding device using large-scale workpiece

The invention discloses a large-sized workpiece welded intelligent robot device, relates to robot technology, in particular to the robot device based on visual control technology. The device consists of a robot body, a sensing system, a robot controller and a welding auxiliary mechanism. The welded robot is provided with nine moving shafts, including three macrographic moving translational moving shafts, three microscopic moving translational moving shafts and three rotating shafts. The robot body comprises a robot frame and a robot head which is arranged on a transverse arm of the robot frame, and the robot frame consists of the three macrographic moving translational moving shafts, namely a horizontal lead rail, an upright post and the transverse arm. The robot head consists of the three microscopic moving translational moving shafts, the three rotating shafts and a welding gun. The robot frame provides the large-scale three-dimensional movement of the robot; the precision of macrographic moving movement is compensated by the microscopic moving mechanisms of the robot head which also provides rotating freedom of motion. The robot device can meet the movement requirements of large scale and precise positioning for the welding operation of large-sized workpieces. Through the visual sensing technology and intelligent visual controlling technology, the device can improve the automatic welding quality and efficiency of the welded robot.
Owner:INST OF AUTOMATION CHINESE ACAD OF SCI

Automatic groove copy welder and welding method

An automatic groove-tracing welding system is capable of carrying out a welding operation, particularly, a welding operation involving weaving, without requiring monitoring even if conditions of a groove is different from design conditions of the groove. An image processor 3 receives an image signal representing an image of a weld zone 52 including the tip of a welding wire from a camera head 2 provided with a CCD camera, processes the image of the weld zone 52 to determine the position of a groove, calculates the positional relation of the groove with a welding torch 1, and sends a position correction for correcting the position of the welding torch 1 so that the welding path of the tip of the welding torch 1 may coincide with a predetermined middle part in the groove to a robot controller 43 for controlling a welding robot. When the automatic groove-tracing welding system performs a welding operation involving weaving, the image processor 3 receives a weaving phase signal representing phases of weaving from the robot controller 43, calculates the positional relation between the groove and the welding torch on the basis of the phase of weaving, and sends a weaving width correction signal to the robot controller 43.
Owner:KAWASAKI HEAVY IND LTD

Implement for automatically milking a dairy animal

ActiveUS20100186675A1High resolutionMaximum of constructive simplicityCathetersRobotPhase differenceMilk cow's
An implement for automatically milking a dairy animal, such as a cow, comprises a milking parlour, a sensor for observing a teat, and a milking robot for automatically attaching a teat cup to the teat. The milking robot comprises a robot control that is connected to the sensor. The sensor comprises a radiation source for emitting light, a receiver for receiving electromagnetic radiation reflected from the dairy animal, a lens, and sensor control unit. The sensor comprises a matrix with a plurality of rows and a plurality of columns of receivers. The sensor control unit is designed to determine for each of the receivers a phase difference between the emitted and the reflected electromagnetic radiation in order to calculate the distance from the sensor to a plurality of points on the part to be observed of the dairy animal.
Owner:MAASLAND

System and method of visual tracking

A machine-vision system, method and article is useful in the field of robotics. One embodiment produces signals that emulate the output of an encoder, based on captured images of an object, which may be in motion. One embodiment provides digital data directly to a robot controller without the use of an intermediary transceiver such as an encoder interface card. One embodiment predicts or determines the occurrence of an occlusion and moves at least one of a camera and / or the object accordingly.
Owner:BRAINTECH

Method and system for controlling drive of a robot

A method and system for controlling drive of a robot having two or more drive axes and driven in accordance with an action program transmitted from a system controller to a robot controller by a wireless transmission way, checks whether a detected current position of the robot coincides with a predetermined start position of the robot in terms of the drive axes, and allows the robot to be driven in accordance with the designated action program when the detected current position coincides with the predetermined start position. Failure in the position control of the robot due to transmission error is prevented by the position checking.
Owner:OG GIKEN CO LTD

Robot controller

A robot controller for teaching a robot with high efficiency. The robot controller including command storage unit (21) where a movement command and a work command are stored, command identifying unit (24) for discriminating between the movement and work commands, unit (22) for making / editing a series of work programs or discrete work programs by a combination of the commands, work program storage units (23) where the work programs are stored so as to control the robot according to the stored program, further including a work section identifying unit (25) for identifying a work section of the work program by way of the command identification unit (24) and work section automatic stopping unit (27) for automatically stopping or suspending the execution of the work program at the work section in a standby state when the work section identifying unit (25) identifies the work section during the execution of the work program.
Owner:YASKAWA DENKI KK

Systems and methods for the destruction of adipose tissue

Described is a system and method for the destruction of adipose tissue using an energy applicator such as a HIFU transducer. The system has a scan head containing an energy applicator, a mechanical arm for carrying the weight of the scan head, and a therapy controller such as a computer for controlling the operation of the scan head. The therapy controller may be part of a general purpose computer, and may be used as a robotic controller to automate the procedure. Methods are included for destroying adipose tissue in a quick, non-invasive manner.
Owner:LIPOSONIX

Robotic surgical system and method for automated creation of ablation lesions

A system for ablating tissue includes an ablation catheter for insertion into the body of a patient and a robotic controller for moving the catheter within the body. The robotic controller advances the catheter until the catheter contacts the tissue surface, maintains contact between the catheter and the tissue surface, and moves the catheter along a predetermined path to create a substantially continuous lesion of ablated tissue. A display device may be used to present a graphical representation of an area of tissue to be ablated. A user interface permits selection of a plurality of treatment points on the graphical representation. The interface is preferably coupled to the controller and catheter such that the controller may cause the catheter to automatically ablate tissue at and between the plurality of treatment points in response to the received user input.
Owner:ST JUDE MEDICAL ATRIAL FIBRILLATION DIV

Robotic manipulator for warehouses

A warehouse robotic system includes a picker robot, including a mobile base, an environment sensing system, a communications system and at least one manipulator. The picker robot can also include an object sensing system. The robotic system also includes a control system, including a communications system and a robot controller which communicates with the picker robot and is connected to an associated warehouse inventory system. The picker robot is adapted to maneuver to a first location, retrieve at least one associated object from the first location, transport the at least one associated object to a second location and place the at least one associated object at the second location. The system can also include a carrier robot and a storage container.
Owner:HDT EXPEDITIONARY SYST

Apparatus and methods for reinforcement-guided supervised learning

Framework may be implemented for transferring knowledge from an external agent to a robotic controller. In an obstacle avoidance / target approach application, the controller may be configured to determine a teaching signal based on a sensory input, the teaching signal conveying information associated with target action consistent with the sensory input, the sensory input being indicative of the target / obstacle. The controller may be configured to determine a control signal based on the sensory input, the control signal conveying information associated with target approach / avoidance action. The controller may determine a predicted control signal based on the sensory input and the teaching signal, the predicted control conveying information associated with the target action. The control signal may be combined with the predicted control in order to cause the robotic apparatus to execute the target action.
Owner:BRAIN CORP

Robot controller and robot controlling method

A robot controller according to an embodiment of the present invention comprises a base; a first link; a first actuator which drives to rotate the first link relative to the base; a first torque transmission mechanism which transmits the torque of the first actuator to the first link at a speed reducing ratio of N1; a first angular sensor which detects a rotating angle θM1 of the first actuator; a first angular velocity sensor which detects an angular velocity ωA1 of the first link rotating relatively to the base; and a processor which calculates an angle of the first link relatively to the base by using a high frequency content of an integrated value of ωA1 and a low frequency content of θM1*N1, the high frequency content being equal to a first frequency or higher and the low frequency content being equal to a first frequency or lower.
Owner:KK TOSHIBA

Robot control system provided in machining system including robot and machine tool

A robot control system provided in a machining system including a robot and a machine tool. The robot control system includes a robot controller controlling the robot, a portable teach pendant connected to the robot controller, and a communication network adapted to connect the robot controller to a machine tool controller controlling the machine tool. The teach pendant includes a display section configured to display information relating to the robot and the machine tool. The robot controller includes a processing section configured to obtain information relating to the machine tool from the machine tool controller through the communication network, make the display section of the teach pendant display a machine tool-related screen in accordance with a given screen program, and make the machine tool-related screen of the display section of the teach pendant display the information, as obtained, relating to the machine tool.
Owner:FANUC LTD

Robot safety system and a method

A robot safety system configured to protect humans in the vicinity of a working robot (1, 11, 21, 31) against harmful impacts by said robot (1, 11, 21, 31), said safety system comprising a sensor system (3, 13, 23) and a safety controller (4, 14, 24) configured to establish an impact risk profile of the robot (1, 11, 21, 31) and deliver an operating signal to a robot controller (2, 12, 22) based on said impact risk profile, wherein the safety controller (4, 14, 24) is configured to establish the impact risk profile based on stored data and input signals, and that the stored data and input signals comprise stored impact data, stored data related to the path of the robot (1, 11, 21, 31), and signals from the sensor system of events in the vicinity of the robot (1, 11, 21, 31), such as a detected human (P1, P11, P21, P22, P31, P32) in the vicinity of the robot (1, 11, 21, 31).
Owner:ABB (SCHWEIZ) AG

Robot assisted bone setting operation medical system with lock marrow internal nail

A robot aided surgical system for the bone setting operation with the locking intramedullary nail is composed of multifunctional automatic operation bed, robot, bone setting regulator on said robot, bone fixing mechanism, high-accuracy full-automatic X-ray machine with C-shaped arm, navigation robot, robot controller, master hand control station, and slave hand control station.
Owner:HARBIN INST OF TECH

Method for searching target object and following motion thereof through stereo vision processing and home intelligent service robot using the same

A home intelligent service robot for recognizing a user and following the motion of a user and a method thereof are provided. The home intelligent service robot includes a driver, a vision processor, and a robot controller. The driver moves an intelligent service robot according to an input moving instruction. The vision processor captures images through at least two or more cameras in response to a capturing instruction for following a target object, minimizes the information amount of the captured image, and discriminates objects in the image into the target object and obstacles. The robot controller provides the capturing instruction for following the target object in a direction of collecting instruction information to the vision processor when the instruction information is collected from outside, and controls the intelligent service robot to follow and move the target object while avoiding obstacles based on the discriminating information from the vision processor.
Owner:ELECTRONICS & TELECOMM RES INST

Robot controller

Disclosed is a robot controller which includes a map acquisition unit for obtaining map data on an active area where the routes are formed, a current location acquisition unit for obtaining current location data on current locations of the robots, a sub-goal acquisition unit for obtaining sub-goal data on sub-goals created on the routes, a collision possibility determination unit for determining whether two robots are likely to collide, a moving route change instruction unit for generating a moving route changing instruction signal, the moving route changing instruction signal for allowing at least one of the two robots to change its route, and a sending device for transmitting the moving route changing instruction signal to the corresponding one of the two robots. In this controller, the robots are controlled such that they move around without causing collisions.
Owner:HONDA MOTOR CO LTD

Securing communications with robots

The present disclosure is directed to a system and method for managing communications with robots. In some implementations, a computer network, where operators interface with the network to control movement of robots on a wireless computer network includes a network arena controller and a plurality of robot controllers. The network arena controller is configured to provide firewall policies to substantially secure communication between robot controllers and the associated robots. Each controller is included in a different robot and configured to wirelessly communicate with the network arena controller. Each robot controller executes firewall policies to substantially secure wireless communication.
Owner:INNOVATION FIRST INC

Robot controller, robot system, robot, robot control method, and program

A robot includes a control unit that controls a movable unit of the robot to move an endpoint of the movable unit closer to a target position, and an image acquisition unit that acquires a target image as an image containing the end point when the end point is in the target position, and a current image as an image containing the end point when the end point is in a current position. The control unit controls movement of the movable unit based on the current image and the target image and output from a force detection unit that detects a force acting on the movable unit.
Owner:SEIKO EPSON CORP

A Method for Optimizing a Robot Program and a Robot System

An apparatus and a method for optimizing robot performance includes a computer connected to the robot controller for receiving performance data of the robot as the controller executes a path program. The computer uses the performance data, user specified optimization objectives and constraints and a kinematic / dynamic simulator to generate a new set of control system parameters to replace the default set in the controller. The computer repeats the process until the new set of control system parameters is optimized.
Owner:FANUC ROBOTICS NORTH AMERICA

Method and apparatus for robot teaching

InactiveUS20120130541A1Eliminating deficiency and limitationRapid responseProgramme controlProgramme-controlled manipulatorEngineeringTactile sensor
A method and apparatus are disclosed for the direct and safe teaching of a robot. The apparatus consists of a plurality of tactile sensors and electronic circuitry encapsulated in a compact enclosure, and a handle protruding from the enclosure. The handle provides an easy means for an operator to apply an external force and to act on the sensors that generate electronic signals to the robot controller. The signals, proportional to the applied force, carry information that sets boundaries for safe operations, thus protecting the operator from any harm and the robot from damage.While in the teaching mode the operator guides the robot with the apparatus to the predetermined work positions that are recorded in the controller memory. The work position recording can be handled by either activating a pushbutton or by a voice command. The recorded positions are played back when the robot operates in the work mode.
Owner:SZALEK LESZEK A

Robot parts assembly on a workpiece moving on an assembly line

An industrial robot is used to assemble a part to a predetermined location on a randomly moving workpiece. The workpiece may be an automobile on an assembly line and the part may be a wheel (a tire mounted on a rim) to be assembled on one of the wheel hubs of the automobile. The robot has mounted on it a camera, a force sensor and a gripper to grip the part. After the robot grips the part, signals from both the force sensor and vision are used by a computing device to move the robot to a position where the robot can assemble the part to the predetermined location on the workpiece. The computing device can be the robot controller or a separate device such as a PC that is connected to the controller.
Owner:ABB RES LTD

Robot controller

Realized is a robot controller capable of handling a large amount of data of images and so on necessary for advanced intelligence of control while securing a real-time performance with a simple structure. For this purpose, there are provided a motion control device for performing a calculation process for achieving motion control of an object to be controlled, a recognition and planning device for performing task and motion planning of the object to be controlled and recognition of outside world, an input / output interface for outputting a command to the object to be controlled and receiving as input, a state of the object to be controlled, and a route selecting device for controlling communications by switching connections among the motion control device the recognition and planning device, and the input / output interface. While controlling the communications by switching the connections among the motion control device, the recognition and planning device, and the input / output interface by the route selecting device, the motions of the robot of the object to be controlled are controlled on the basis of the results of the task and motion planning of the object to be controlled and the recognition of the outside world.
Owner:PANASONIC CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products