Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

3069results about How to "Sure easy" patented technology

Apparatus and method for determining the relative position and orientation of neurostimulation leads

Interelectrode impedance or electric field potential measurements are used to determine the relative orientation of one lead to other leads in the spinal column or other body/tissue location. Interelectrode impedance is determined by measuring impedance vectors. The value of the impedance vector is due primarily to the electrode-electrolyte interface, and the bulk impedance between the electrodes. The bulk impedance between the electrodes is, in turn, made up of (1) the impedance of the tissue adjacent to the electrodes, and (2) the impedance of the tissue between the electrodes. In one embodiment, the present invention makes both monopolar and bipolar impedance measurements, and then corrects the bipolar impedance measurements using the monopolar measurements to eliminate the effect of the impedance of the tissue adjacent the electrodes. The orientation and position of the leads may be inferred from the relative minima of the corrected bipolar impedance values. These corrected impedance values may also be mapped and stored to facilitate a comparison with subsequent corrected impedance measurement values. Such comparison allows a determination to be made as to whether the lead position and/or orientation has changed appreciably over time. In another embodiment, one or more electrodes are stimulated and the resulting electric field potential on the non-stimulated electrodes is measured. Such field potential measurements provide an indication of the relative orientation of the electrodes. Once known, the relative orientation may be used to track lead migration, to setup stimulation configurations and parameters for nominal stimulation and/or navigation. Also, such measurements allow automatic adjustment of stimulation energy to a previously-defined optimal potential field in the case of lead migration or postural changes.

Exercise workout support device

A device is provided, which is capable of determining the maximum oxygen uptake quantity without the restriction of a large device or requiring troublesome operations to be carried out. The device displays the upper and lower limit values for the pulse rate corresponding to an appropriate exercise intensity, and realizes in a wireless manner by means of optical communications the sending and receiving of information such as pulse wave signals to and from an information processing device which processes pulse wave information. The device is provided with a pulse wave detector 101 for detecting the test subject s pulse waveform; an FFT processor 103 for determining the test subject s heartbeat rate from the pulse waveform; a body motion detector 104 for detecting body motion when the test subject is running; an FFT processor 106 for determining the pitch from body motion during running by the test subject; exercise intensity calculator 108 for determining pitch, the test subject s stride, and the exercise intensity from body motion during running; and a nomogram recorder 109 for recording the relationship indicated by an Astrand-Ryhming nomogram, and determining the maximum oxygen uptake quantity from the heart rate and exercise intensity. The obtained maximum oxygen uptake quantity is divided by the test subject s body weight, to calculate the maximum oxygen uptake quantity per unit body weight. Next, the maximum oxygen uptake quantity and pulse according to sex are determined, and the pulse rate is multiplied by the upper and lower limit value coefficients, to determine the upper limit value UL and the lower limit value LL for the pulse rate.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products