Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

4153 results about "Spinal column" patented technology

Apparatus and method for determining the relative position and orientation of neurostimulation leads

Interelectrode impedance or electric field potential measurements are used to determine the relative orientation of one lead to other leads in the spinal column or other body/tissue location. Interelectrode impedance is determined by measuring impedance vectors. The value of the impedance vector is due primarily to the electrode-electrolyte interface, and the bulk impedance between the electrodes. The bulk impedance between the electrodes is, in turn, made up of (1) the impedance of the tissue adjacent to the electrodes, and (2) the impedance of the tissue between the electrodes. In one embodiment, the present invention makes both monopolar and bipolar impedance measurements, and then corrects the bipolar impedance measurements using the monopolar measurements to eliminate the effect of the impedance of the tissue adjacent the electrodes. The orientation and position of the leads may be inferred from the relative minima of the corrected bipolar impedance values. These corrected impedance values may also be mapped and stored to facilitate a comparison with subsequent corrected impedance measurement values. Such comparison allows a determination to be made as to whether the lead position and/or orientation has changed appreciably over time. In another embodiment, one or more electrodes are stimulated and the resulting electric field potential on the non-stimulated electrodes is measured. Such field potential measurements provide an indication of the relative orientation of the electrodes. Once known, the relative orientation may be used to track lead migration, to setup stimulation configurations and parameters for nominal stimulation and/or navigation. Also, such measurements allow automatic adjustment of stimulation energy to a previously-defined optimal potential field in the case of lead migration or postural changes.
Owner:BOSTON SCI NEUROMODULATION CORP

Methods and apparatus for forming curved axial bores through spinal vertebrae

One or more curved axial bore is formed commencing from an anterior or posterior sacral target point and cephalad through vertebral bodies in general alignment with a visualized, trans-sacral axial instrumentation / fusion (TASIF) line in a minimally invasive, low trauma, manner. An anterior axial instrumentation / fusion line (AAIFL) or a posterior axial instrumentation / fusion line (PAIFL) that extends from the anterior or posterior target point, respectively, in the cephalad direction following the spinal curvature through one or more vertebral body is visualized by radiographic or fluoroscopic equipment. Generally curved anterior or posterior TASIF axial bores are formed in axial or parallel or diverging alignment with the visualized AAIFL or PAIFL, respectively. The anterior and posterior TASIF axial bore forming tools can be manipulated from proximal portions thereof to adjust the curvature of the anterior or posterior TASIF axial bores as they are formed in the cephalad direction. The boring angle of the distally disposed boring member or drill bit can be adjusted such that selected sections of the generally curved anterior or posterior TASIF axial bores can be made straight or relatively straight, and other sections thereof can be made curved to optimally traverse vertebral bodies and intervening disc, if present.
Owner:MIS IP HLDG LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products