Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

749 results about "Ligament structure" patented technology

Peritoneal ligament: a fold of peritoneum or other membranes. Fetal remnant ligament: the remnants of a fetal tubular structure. Periodontal ligament: a group of fibers that attach the cementum of teeth to the surrounding alveolar bone.

Medical devices and applications of polyhydroxyalkanoate polymers

Devices formed of or including biocompatible polyhydroxyalkanoates are provided with controlled degradation rates, preferably less than one year under physiological conditions. Preferred devices include sutures, suture fasteners, meniscus repair devices, rivets, tacks, staples, screws (including interference screws), bone plates and bone plating systems, surgical mesh, repair patches, slings, cardiovascular patches, orthopedic pins (including bone filling augmentation material), adhesion barriers, stents, guided tissue repair/regeneration devices, articular cartilage repair devices, nerve guides, tendon repair devices, atrial septal defect repair devices, pericardial patches, bulking and filling agents, vein valves, bone marrow scaffolds, meniscus regeneration devices, ligament and tendon grafts, ocular cell implants, spinal fusion cages, skin substitutes, dural substitutes, bone graft substitutes, bone dowels, wound dressings, and hemostats. The polyhydroxyalkanoates can contain additives, be formed of mixtures of monomers or include pendant groups or modifications in their backbones, or can be chemically modified, all to alter the degradation rates. The polyhydroxyalkanoate compositions also provide favorable mechanical properties, biocompatibility, and degradation times within desirable time frames under physiological conditions.

Concave probe for arthroscopic surgery

Disclosed herein is a new arthroscopic probe with a concave distal tip which simultaneously constrains and cuts tissue. It is particularly adapted to cutting ligaments and tendons. Also disclosed is a thermal energy delivery apparatus which includes (a) a probe means with a distal end and a proximal end, wherein the distal end has a concave tip; (b) a first electrode means positioned at the distal end of the probe means, wherein the first electrode means is configured to deliver sufficient thermal energy to cut ligaments or tendons; and (c) a cabling means coupled to the proximal end of the probe means. In another embodiment of the invention a controller for controlling the delivery of energy and liquid to a surgical instrument with a temperature sensor is disclosed. The energy is supplied by an energy source and the liquid is supplied by a pump. The controller includes a temperature and a flow regulator. The temperature regulator is coupled to the energy source and coupled to the pump. The temperature regulator is responsive to a first temperature indication from the temperature sensor to determine that the first temperature indication exceeds a setpoint and to reduce an energy level from the energy source. The flow regulator is coupled to the pump and coupled to the temperature regulator. The flow regulator includes responsiveness to the first temperature indication to increase a flow of the liquid from the pump.

Orthopedic stabilization device

An orthopedic device is described for stabilizing the spinal column between first and second vertebral bodies. The device has first and second anchors adapted for fixation to the first and second vertebral bodies, respectively. The device further includes an elongated bridge with first and second ends operatively connected to the first and second anchors, respectively. The bridge contains an implantable ligament made preferably of a nickel titanium alloy selected to have inelastic properties at body temperature, wherein the bridge is capable of continuous plastic deformation to allow relative constrained motion between the vertebral bodies. In a preferred embodiment the device further includes a dampening member surrounding the ligament, which may be a wire, tube or band. In another preferred embodiment the device includes rigid rod members each correspondingly retained with either end of the ligament, and independently attached to the vertebral bodies with anchors. The rigid rod members are correspondingly connected to either end of the ligament. In yet another preferred embodiment, the device includes plate segments correspondingly retained with either end of the ligament, and independently attached to the vertebral bodies with a plurality of anchors. Other preferred devices and kits containing such devices are also described.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products