Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

377 results about "Relative direction" patented technology

The most common relative directions are left, right, forward(s), backward(s), up, and down. No absolute direction corresponds to any of the relative directions. This is a consequence of the translational invariance of the laws of physics: nature, loosely speaking, behaves the same no matter what direction one moves. As demonstrated by the Michelson-Morley null result, there is no absolute inertial frame of reference. There are definite relationships between the relative directions, however. left and right, forward and backward, and up and down are three pairs of complementary directions, each pair orthogonal to both of the others. Relative directions are also known as egocentric coordinates.

Apparatus and method for determining the relative position and orientation of neurostimulation leads

Interelectrode impedance or electric field potential measurements are used to determine the relative orientation of one lead to other leads in the spinal column or other body / tissue location. Interelectrode impedance is determined by measuring impedance vectors. The value of the impedance vector is due primarily to the electrode-electrolyte interface, and the bulk impedance between the electrodes. The bulk impedance between the electrodes is, in turn, made up of (1) the impedance of the tissue adjacent to the electrodes, and (2) the impedance of the tissue between the electrodes. In one embodiment, the present invention makes both monopolar and bipolar impedance measurements, and then corrects the bipolar impedance measurements using the monopolar measurements to eliminate the effect of the impedance of the tissue adjacent the electrodes. The orientation and position of the leads may be inferred from the relative minima of the corrected bipolar impedance values. These corrected impedance values may also be mapped and stored to facilitate a comparison with subsequent corrected impedance measurement values. Such comparison allows a determination to be made as to whether the lead position and / or orientation has changed appreciably over time. In another embodiment, one or more electrodes are stimulated and the resulting electric field potential on the non-stimulated electrodes is measured. Such field potential measurements provide an indication of the relative orientation of the electrodes. Once known, the relative orientation may be used to track lead migration, to setup stimulation configurations and parameters for nominal stimulation and / or navigation. Also, such measurements allow automatic adjustment of stimulation energy to a previously-defined optimal potential field in the case of lead migration or postural changes.
Owner:BOSTON SCI NEUROMODULATION CORP

Apparatus and method for determining the relative position and orientation of neurostimulation leads

Interelectrode impedance or electric field potential measurements are used to determine the relative orientation of one lead to other leads in the spinal column or other body / tissue location. Interelectrode impedance is determined by measuring impedance vectors. The value of the impedance vector is due primarily to the electrode-electrolyte interface, and the bulk impedance between the electrodes. The bulk impedance between the electrodes is, in turn, made up of (1) the impedance of the tissue adjacent to the electrodes, and (2) the impedance of the tissue between the electrodes. In one embodiment, the present invention makes both monopolar and bipolar impedance measurements, and then corrects the bipolar impedance measurements using the monopolar measurements to eliminate the effect of the impedance of the tissue adjacent the electrodes. The orientation and position of the leads may be inferred from the relative minima of the corrected bipolar impedance values. These corrected impedance values may also be mapped and stored to facilitate a comparison with subsequent corrected impedance measurement values. Such comparison allows a determination to be made as to whether the lead position and / or orientation has changed appreciably over time. In another embodiment, one or more electrodes are stimulated and the resulting electric field potential on the non-stimulated electrodes is measured. Such field potential measurements provide an indication of the relative orientation of the electrodes. Once known, the relative orientation may be used to track lead migration, to setup stimulation configurations and parameters for nominal stimulation and / or navigation. Also, such measurements allow automatic adjustment of stimulation energy to a previously-defined optimal potential field in the case of lead migration or postural changes.
Owner:BOSTON SCI NEUROMODULATION CORP

Two-dimensional code and vision-inert combined navigation system and method for robot

The invention provides a two-dimensional code and a vision-inert combined navigation system and method for a robot. A sealed assistant frame is arranged at the periphery of the two-dimensional code, and the sealed assistant frame and the two-dimensional code are both applied to vision navigation. The two-dimensional code is used in the vision-inert combined navigation system for the robot; the vision-inert combined navigation method for the robot comprises the following steps: paving a plurality of two-dimensional codes with the sealed assistant frames at the peripheries on a ground; when the robot walks forwards, taking images by using imaging equipment; acquiring the absolute position and the absolute direction angle of the imaging equipment, and acquiring the absolute coordinates of the two-dimensional codes, and the absolute position and the absolute direction angle of the imaging equipment; confirming the relative position of the robot relative to a present starting point and the relative direction angle of the robot relative to a present starting direction angle; acquiring the absolute position of the robot, and taking the absolute position as a next starting point; acquiring the absolute direction angle of the robot, and taking the absolute direction angle as a next starting direction angle.
Owner:BEIJING JIZHIJIA TECH CO LTD

Determining the direction of travel of an automotive vehicle from yaw rate and relative steering wheel angle

A method of using relative steering wheel angle of an automotive vehicle, vehicle yaw rate, and vehicle speed to determine whether the vehicle is traveling forward or backward. Forward and backward steering wheel angles are calculated from vehicle speed and yaw rate (22). A difference between relative steering wheel angle and forward steering wheel angle (10), and a difference between relative steering wheel angle and backward steering wheel angle (12) are calculated. The difference between relative steering wheel angle and forward steering wheel angle is filtered (14), and a difference between the filtered and the unfiltered difference between relative steering wheel angle and forward steering wheel angle is calculated to obtain a forward net difference (18). The difference between relative steering wheel angle and backward steering wheel angle is filtered (16), and a difference between the filtered and the unfiltered difference between relative steering wheel angle and backward steering wheel angle is calculated to obtain a backward net difference (20). While repeatedly performing the foregoing steps, forward net difference values derived from the forward net differences are accumulated (24), and backward net difference values derived from the backward net differences are accumulated (26). The travel direction is determined by comparing the accumulation of forward net difference values and the accumulation of backward net difference values (28). Absolute steering wheel angle and road bank angle can also be calculated.
Owner:FORD GLOBAL TECH LLC

Automatic collimation measurement system, collimation method and measurement method for spacecraft devices

The invention discloses a collimation measurement system for attitudes and angles among spacecraft devices based on the combination between a robot and a theodolite. The system herein includes a robot, a laser tracker, a laser tracking target (T-MAC), a robot terminal tool, and the like. The system searches a to-be-tested datum cube mirror which is disposed on a spacecraft device by conducting mode identification, and computes the relations of phase position and direction of the datum cube mirror with respect to the theodolite. The laser tracker is intended for calibrating the relative direction relation in a coordinate system of respective spacecraft devices and integrating the measurement results of the theodolite at different measurement positions to the same coordinate system. Based onthe calibration relation and the relative relation, the laser tracker is guided to real-timely track the robot terminal tool and establish the relative relation between the laser track and the robotterminal tool. And eventually, the attitude relation matrix of the spacecraft is computed. According to the invention, the automatic measurement of the attitude relation among different devices is realized, the measurement efficiency can reach one time per half-minute, the measurement precision can be higher than 30'', on-site measurement flexibility is higher, and construction and measurement indifferent places can be much easier.
Owner:BEIJING INST OF SPACECRAFT ENVIRONMENT ENG

Target following control method of mobile robot

ActiveCN106094875AEnhanced target following functionHigh Feature Detection CapabilitiesTelevision system detailsImage enhancementAutomatic controlFeature detection
The invention discloses a target following control method of a mobile robot. The target following control method comprises the steps of arranging a triangular camera set on the mobile robot, and distributing a corresponding ID number and a visual angle range; acquiring an identity characteristic of a following target, and performing uploading and storage of the identity characteristic; detecting the identity characteristic of a to-be-followed target and uploading the identity characteristic of the to-be-followed target to a cloud server, performing characteristic matching by the cloud server, when matching succeeds, determining and locking the to-be-followed target as the following target; tracking the locked following target by a person, and obtaining relative direction between the following target and the mobile robot; performing real-time detection on the locked following target for obtaining a relative distance through calculation; determining a moving route according to the obtained relative directions and relative distance between the following target and the mobile robot, and making the mobile robot move to the following object according to the moving route. The target following control method has higher characteristic detecting function and higher automatic control function. Furthermore the target following control method can be well used for a robot tracking process.
Owner:NANJING NANYOU INST OF INFORMATION TECHNOVATION CO LTD

Image acquisition and positioning method and image acquisition and positioning system

The invention discloses an image acquisition and positioning method and an image acquisition and positioning system. The method comprises the following steps: acquisition of a reference direction: a step of acquiring the reference direction corresponding to a user; confirmation of staring: a step of confirming that the eyes of the user are staring at a positioning assistant object; acquisition of object information: a step of acquiring the position information of the positioning assistant object; acquisition of distance: a step of acquiring the distance between the user and the positioning assistant object; acquisition of an angle: a step of acquiring the angle between the staring direction of the user and the reference direction; and positioning: a step of acquiring the position information of the user on the basis of the position information of the positioning assistant object, the distance between the user and the positioning assistant object, the reference direction and the angle between the staring direction of the user and the reference direction. According to the invention, accurate positioning of the position of the user is realized by acquiring the distance between and the relative direction of the positioning assistant object stared by the eyes of the user and the user, and image acquisition and positioning precision is improved.
Owner:BEIJING ZHIGU RUI TUO TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products