Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

3540 results about "Inertial measurement unit" patented technology

An inertial measurement unit (IMU) is an electronic device that measures and reports a body's specific force, angular rate, and sometimes the orientation of the body, using a combination of accelerometers, gyroscopes, and sometimes magnetometers. IMUs are typically used to maneuver aircraft (an attitude and heading reference system), including unmanned aerial vehicles (UAVs), among many others, and spacecraft, including satellites and landers. Recent developments allow for the production of IMU-enabled GPS devices. An IMU allows a GPS receiver to work when GPS-signals are unavailable, such as in tunnels, inside buildings, or when electronic interference is present. A wireless IMU is known as a WIMU.

Real-time integrated vehicle positioning method and system with differential GPS

A real-time integrated vehicle positioning method and system with differential GPS can substantially solve the problems encountered in either the global positioning system-only or the inertial navigation system-only, such as loss of global positioning satellite signal, sensitivity to jamming and spoofing, and an inertial solution's drift over time. In the present invention, the velocity and acceleration from an inertial navigation processor of the integrated GPS/INS system are used to aid the code and carrier phase tracking of the global positioning system satellite signals, so as to enhance the performance of the global positioning and inertial integration system, even in heavy jamming and high dynamic environments. To improve the accuracy of the integrated GPS/INS navigation system, phase measurements are used and the idea of the differential GPS is employed. However, integer ambiguities have to be resolved for high accuracy positioning. Therefore, in the present invention a new on-the-fly ambiguity resolution technique is disclosed to resolve double difference integer ambiguities. The real-time fully-coupled GPS/IMU vehicle positioning system includes an IMU (inertial measurement unit), a GPS processor, and a data link which are connected to a central navigation processor to produce a navigation solution that is output to an I/O (input/output) interface.
Owner:AMERICAN GNC

Stable motion tracking method and stable motion tracking device based on integration of simple camera and IMU (inertial measurement unit) of smart cellphone

InactiveCN105953796AFast and stable motion tracking methodStable motion tracking methodImage analysisNavigation by speed/acceleration measurementsThree-dimensional spaceAngular velocity
The invention discloses a stable motion tracking method and a stable motion tracking device based on integration of a simple camera and an IMU (inertial measurement unit) of a smart cellphone, and belongs to the technical field of AR (augmented reality) / VR (virtual reality) motion tracking. The method includes processing an acquired image according to an ORB (object request broker) algorithm, performing 3D (three-dimensional) reconstruction to obtain initial map points, and completing map initialization; performing visual tracking through ORB algorithm real-time matching and parallel partial keyframe mapping to obtain a visual pose; acquiring accelerated velocity and angular velocity, both generated in a three-dimensional space, of the IMU, and performing integral operation on the accelerated velocity and the angular velocity to obtain an IMU pose prediction result; performing Kalman fusion on the visual pose and the IMU pose prediction result, and performing motion tracking according to pose information acquired after fusion. Compared with the prior art, the stable motion tracking method and the stable motion tracking device have the advantages that a stable motion tracking mode can be acquired and real-time online dimension estimation can be achieved.
Owner:北京暴风魔镜科技有限公司

Unscented Kalman filter-based method for tracking inertial pose according to acceleration compensation

The invention provides an unscented Kalman filter-based method for tracking an inertial pose according to acceleration compensation, which is used for an inertial measurement unit integrating a three-axis micro-gyroscope, a three-axis micro-accelerometer and a three-axis magnetoresistive sensor, and realizes pose tracking estimation on a device carrier by using rotary angular velocity vectors, acceleration vectors and magnetic field sensor vectors which are detected by the device by means of filter technology. The method comprises the following steps: 1) treating the acceleration vectors as combination of the acceleration vectors and gravity acceleration vectors of the device carrier self, and constructing observation equations respectively for amplitude and normalized direction vectors of the acceleration vectors and the gravity acceleration vectors; 2) describing quaternion, accumulated error vectors of the gyroscope and the acceleration vectors of the device carrier self by using the pose to construct a system state vector; and 3) realizing a filter estimating process of the system by using the unscented Kalman filter technology because of nonlinearity of the observation equations. Compared with the conventional method ignoring the acceleration of the carrier self, the method not only can provide a more accurate estimation result, but also widens the application range of the system.
Owner:INST OF AUTOMATION CHINESE ACAD OF SCI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products