Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

180 results about "Rate gyro" patented technology

A rate gyro is a type of gyroscope, which rather than indicating direction, indicates the rate of change of angle with time. If a gyro has only one gimbal ring, with consequently only one plane of freedom, it can be adapted for use as a rate gyro to measure a rate of angular movement.

Multi-antenna GNSS control system and method

A global navigation satellite sensor system (GNSS) and gyroscope control system for vehicle steering control comprising a GNSS receiver and antennas at a fixed spacing to determine a vehicle position, velocity and at least one of a heading angle, a pitch angle and a roll angle based on carrier phase position differences. The roll angle facilitates correction of the lateral motion induced position errors resultant from motion of the antennae as the vehicle moves based on an offset to ground and the roll angle. The system also includes a control system configured to receive the vehicle position, heading, and at least one of roll and pitch, and configured to generate a steering command to a vehicle steering system. The system includes gyroscopes for determining system attitude change with respect to multiple axes for integrating with GNSS-derived positioning information to determine vehicle position, velocity, rate-of-turn, attitude and other operating characteristics. A vehicle control method includes the steps of computing a position and a heading for the vehicle using GNSS positioning and a rate gyro for determining vehicle attitude, which is used for generating a steering command. Alternative aspects include multiple-antenna GNSS guidance methods for high-dynamic roll compensation, real-time kinematic (RTK) using single-frequency (L1) receivers, fixed and moving baselines between antennas, multi-position GNSS tail guidance (“breadcrumb following”) for crosstrack error correction, articulated implements with multiple antennas on each implement section, video input and guiding multiple vehicles and pieces of equipment relative to each other.
Owner:AGJUNCTION

GNSS guidance and machine control

A global navigation satellite sensor system (GNSS) and gyroscope control system for vehicle steering control comprising a GNSS receiver and antennas at a fixed spacing to determine a vehicle position, velocity and at least one of a heading angle, a pitch angle and a roll angle based on carrier phase position differences. The roll angle facilitates correction of the lateral motion induced position errors resultant from motion of the antennae as the vehicle moves based on an offset to ground and the roll angle. The system also includes a control system configured to receive the vehicle position, heading, and at least one of roll and pitch, and configured to generate a steering command to a vehicle steering system. The system includes gyroscopes for determining system attitude change with respect to multiple axes for integrating with GNSS-derived positioning information to determine vehicle position, velocity, rate-of-turn, attitude and other operating characteristics. A vehicle control method includes the steps of computing a position and a heading for the vehicle using GNSS positioning and a rate gyro for determining vehicle attitude, which is used for generating a steering command. Alternative aspects include multiple-antenna GNSS guidance methods for high-dynamic roll compensation, real-time kinematic (RTK) using single-frequency (L1) receivers, fixed and moving baselines between antennas, multi-position GNSS tail guidance (“breadcrumb following”) for crosstrack error correction, guiding multiple vehicles and pieces of equipment relative to each other and earth-moving equipment and method applications.
Owner:AGJUNCTION

GNSS guidance and machine control

A global navigation satellite sensor system (GNSS) and gyroscope control system for vehicle steering control comprising a GNSS receiver and antennas at a fixed spacing to determine a vehicle position, velocity and at least one of a heading angle, a pitch angle and a roll angle based on carrier phase position differences. The roll angle facilitates correction of the lateral motion induced position errors resultant from motion of the antennae as the vehicle moves based on an offset to ground and the roll angle. The system also includes a control system configured to receive the vehicle position, heading, and at least one of roll and pitch, and configured to generate a steering command to a vehicle steering system. The system includes gyroscopes for determining system attitude change with respect to multiple axes for integrating with GNSS-derived positioning information to determine vehicle position, velocity, rate-of-turn, attitude and other operating characteristics. A vehicle control method includes the steps of computing a position and a heading for the vehicle using GNSS positioning and a rate gyro for determining vehicle attitude, which is used for generating a steering command. Alternative aspects include multiple-antenna GNSS guidance methods for high-dynamic roll compensation, real-time kinematic (RTK) using single-frequency (L1) receivers, fixed and moving baselines between antennas, multi-position GNSS tail guidance (“breadcrumb following”) for crosstrack error correction, guiding multiple vehicles and pieces of equipment relative to each other and earth-moving equipment and method applications.
Owner:AGJUNCTION

Multiple-antenna GNSS control system and method

A global navigation satellite sensor system (GNSS) and gyroscope control system for vehicle steering control comprising a GNSS receiver and antennas at a fixed spacing to determine a vehicle position, velocity and at least one of a heading angle, a pitch angle and a roll angle based on carrier phase position differences. The roll angle facilitates correction of the lateral motion induced position errors resultant from motion of the antennae as the vehicle moves based on an offset to ground and the roll angle. The system also includes a control system configured to receive the vehicle position, heading, and at least one of roll and pitch, and configured to generate a steering command to a vehicle steering system. The system includes gyroscopes for determining system attitude change with respect to multiple axes for integrating with GNSS-derived positioning information to determine vehicle position, velocity, rate-of-turn, attitude and other operating characteristics. A vehicle control method includes the steps of computing a position and a heading for the vehicle using GNSS positioning and a rate gyro for determining vehicle attitude, which is used for generating a steering command. Alternative aspects include multiple-antenna GNSS guidance methods for high-dynamic roll compensation, real-time kinematic (RTK) using single-frequency (L1) receivers, fixed and moving baselines between antennas, multi-position GNSS tail guidance (“breadcrumb following”) for crosstrack error correction and guiding multiple vehicles and pieces of equipment relative to each other.
Owner:HEMISPHERE GNSS

Inclinometer measurement system and method providing correction for movement induced acceleration errors

The present invention includes a system and a method by which the inclination of a machine element, such as a platform, may be sensed, and errors that might otherwise result from tangential and radial acceleration eliminated. The platform defines orthogonal X and Y axes, and a Z axis orthogonal to both the X and Y axes. The platform is rotatable about an axis extending parallel to the Z axis. The system includes an inclinometer, mounted on the platform at a location spaced from the axis of rotation by a distance r, for providing inclinometer outputs indicating acceleration in the X and Y directions, designated as Ix and Iy, respectively. A line from the axis of rotation to the inclinometer forms an included angle B with the X axis. A rate gyro is mounted on the platform. The rate gyro senses the rotational speed w of the platform about the axis of rotation and provides a rate gyro output indicating the rotational speed w. A circuit differentiates the rate gyro output to determine the angular acceleration of the platform dw / dt. A circuit multiplies the angular acceleration by the value r to determine the tangential acceleration of the platform at the point where the inclinometer is mounted r(dw / dt). A circuit resolves the tangential acceleration of the platform at the point where the inclinometer is mounted to determine the X axis component thereof, and resolves the tangential acceleration of the platform at the point where the inclinometer is mounted to determine the Y axis component thereof. A circuit subtracts the X axis component of the tangential acceleration of the platform at the point where the inclinometer is mounted from the acceleration Ix, sensed in a direction parallel to the X axis, and subtracts the Y axis component of the tangential acceleration of the platform at the point where the inclinometer is mounted from the acceleration Iy, sensed in a direction parallel to the Y axis. As a consequence, the inclinometer outputs Ix and Iy are corrected for errors that would otherwise result from tangential acceleration.
Owner:CATERPILLAR TRIMBLE CONTROL TECH

Pavement identification method for reinforced road in automobile proving ground

ActiveCN106092600AAddressed difficulty with terrain insensitivityImprove recognition accuracyVehicle testingApplicability domainVibration acceleration
Provided is a pavement identification method for a reinforced road in an automobile proving ground. The method comprises steps of: acquiring the motion information of a vehicle body and axles by an acceleration sensor and an angular rate gyroscope, and acquiring CAN message data on a vehicle bus via an OBD interface of the vehicle; preprocessing acquired multi-source data to obtain stable time-domain data; computing the attitude information of the vehicle body and the axles and analyzing the protocol of the CAN messages; transforming the vibration acceleration data and attitude data from the time domain into the spatial domain by using vehicle speed; performing time-domain and frequency-domain feature extraction on the data in the spatial domain; designing a artificial neural network pavement classifier based on the extracted time-domain and frequency-domain features to identify the reinforced road in the automobile proving ground. The method solve a problem that an independent suspension is insensitive to landforms, compensates the defect of a conventional method that identifies the pavements just by using acceleration data, and greatly increases the identification accuracy and application range of the test road landform and ground.
Owner:SOUTHEAST UNIV

Rate gyro stabilizing platform type antenna followup system

InactiveCN101382805AImplement Proportional GuidanceHigh precisionControl using feedbackNegative feedbackRadar
The invention provides a follow-up tracking system of a rate gyroscope stabilized platform type antenna, which comprises a direction-finding device, an adjustment link, a PID controller, a PWM driver, a moment motor, an angle measuring potentiometer, an angular rate gyroscope and a differential link. The PWM driver, the moment motor, the angular rate gyroscope and the differential link are connected in sequence to form an angular acceleration negative feedback loop; the PID controller, the PWM driver, the moment motor and the the angular rate gyroscope are connected in sequence to form an angular rate negative feedback loop; the direction-finding device, a preamplifier, the adjustment link and the angular rate negative feedback circuit form an angular position negative feedback loop; the angle measuring potentiometer, the preamplifier, the adjustment link and the angular rate negative feedback loop form an angle searching loop. The follow-up tracking system is an antenna follow-up system which is used for realizing the follow-up tracking technology of stably tracking, searching and isolating the angular motion of a carrier in the direction-finding devices, such as radars, optical imaging, and the like, in moving carriers so as to realize high precision, weak coupling, anti-turn-off performance, fastness and stabilization and realize proportional guidance.
Owner:HARBIN ENG UNIV

Working method of strap-down magnetic inertia combination system

The invention relates to a working method of a strap-down magnetic inertia combination system. In the method, a signal conditioning module filters and amplifies an angular rate signal and a sine signal; an acquisition module carries out analog/digital conversion for the angular rate signal and the sine signal conditioned by the signal conditioning module, sends the sine signal to a first resolving module, and outputs the angular rate signal to a second resolving module; according to the sine signal, the first resolving module resolves a roll angle gamma and roll angle rate omega x; according to the angular rate signal and the roll angle rate omega x, the second resolving module resolves an azimuth angle psi and a pitching angle theta; and an output module is used for outputting the roll angle gamma, the azimuth angle psi and the pitching angle theta. For the measurement of the roll angle rate, the working method does not use the prior angular rate gyro, but directly uses a geomagnetic roll angle measuring unit to resolve the roll angle and the roll angle rate of a rotary bomb; and because the position of the roll angle can be directly acquired, the integral accumulated error brought by integral acquisition position quantity is avoided.
Owner:BEIJING XINGJIAN CHANGKONG MEASUREMENT CONTROL TECH +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products