Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1087 results about "Inclinometer" patented technology

An inclinometer or clinometer is an instrument used for measuring angles of slope (or tilt), elevation, or depression of an object with respect to gravity's direction. It is also known as a tilt indicator, tilt sensor, tilt meter, slope alert, slope gauge, gradient meter, gradiometer, level gauge, level meter, declinometer, and pitch & roll indicator. Clinometers measure both inclines (positive slopes, as seen by an observer looking upwards) and declines (negative slopes, as seen by an observer looking downward) using three different units of measure: degrees, percent, and topo (see Grade (slope) for details). Astrolabes are inclinometers that were used for navigation and locating astronomical objects from ancient times to the Renaissance.

Daytime stellar imager

An automatic celestial navigation system for navigating both night and day by observation of K-band or H-band infrared light from multiple stars. In a first set of preferred embodiments three relatively large aperture telescopes are rigidly mounted on a movable platform such as a ship or airplane with each telescope being directed at a substantially different portion of sky. Embodiments in this first set tend to be relatively large and heavy, such as about one cubic meter and about 60 pounds. In a second set of preferred embodiments one or more smaller aperture telescopes are pivotably mounted on a movable platform such as a ship, airplane or missile so that the telescope or telescopes can be pivoted to point toward specific regions of the sky. Embodiments of this second set are mechanically more complicated than those of the first set, but are much smaller and lighter and are especially useful for guidance of aircraft and missiles. Telescope optics focus (on to a pixel array of a sensor) H-band or K-band light from one or more stars in the field of view of each telescope. Each system also includes an inclinometer, an accurate timing device and a computer processor having access to catalogued infrared star charts. The processor for each system is programmed with special algorithms to use image data from the infrared sensors, inclination information from the inclinometer, time information from the timing device and the catalogued star charts information to determine positions of the platform. Direction information from two stars is needed for locating the platform with respect to the celestial sphere. The computer is also preferably programmed to use this celestial position information to calculate latitude and longitude which may be displayed on a display device such as a monitor or used by a guidance control system. These embodiments are jam proof and insensitive to radio frequency interference. These systems provide efficient alternatives to GPS when GPS is unavailable and can be used for periodic augmentation of inertial navigation systems.
Owner:TREX ENTERPRISES CORP

Daytime stellar imager

InactiveUS20070038374A1Small and light systemAvoid star image blurCosmonautic vehiclesDigital data processing detailsDisplay deviceLongitude
An automatic celestial navigation system for navigating both night and day by observation of K-band or H-band infrared light from multiple stars. In a first set of preferred embodiments three relatively large aperture telescopes are rigidly mounted on a movable platform such as a ship or airplane with each telescope being directed at a substantially different portion of sky. Embodiments in this first set tend to be relatively large and heavy, such as about one cubic meter and about 60 pounds. In a second set of preferred embodiments one or more smaller aperture telescopes are pivotably mounted on a movable platform such as a ship, airplane or missile so that the telescope or telescopes can be pivoted to point toward specific regions of the sky. Embodiments of this second set are mechanically more complicated than those of the first set, but are much smaller and lighter and are especially useful for guidance of aircraft and missiles. Telescope optics focus (on to a pixel array of a sensor) H-band or K-band light from one or more stars in the field of view of each telescope. Each system also includes an inclinometer, an accurate timing device and a computer processor having access to catalogued infrared star charts. The processor for each system is programmed with special algorithms to use image data from the infrared sensors, inclination information from the inclinometer, time information from the timing device and the catalogued star charts information to determine positions of the platform. Direction information from two stars is needed for locating the platform with respect to the celestial sphere. The computer is also preferably programmed to use this celestial position information to calculate latitude and longitude which may be displayed on a display device such as a monitor or used by a guidance control system. These embodiments are jam proof and insensitive to radio frequency interference. These systems provide efficient alternatives to GPS when GPS is unavailable and can be used for periodic augmentation of inertial navigation systems.
Owner:TREX ENTERPRISES CORP

Method and system for monitoring paving thickness of high-level highway pavement in real time

ActiveCN103866673ARealize full-section acquisitionReduce one-sidednessUsing optical meansRoads maintainenceLaser rangingGeomorphology
The invention discloses a method and a system for monitoring paving thickness of a high-level highway pavement in real time, belonging to the field of road construction quality control. The method comprises the following steps: erecting an automatic tracking total station nearby a paving site, determining the position of an erection point through a resection survey method according to the known point coordinate, positioning and tracking a 360-degree prism according to enough short time interval by utilizing the automatic tracking total station, measuring the inclination angles of a transverse beam and a longitudinal beam of a platform trolley in the device by adopting an inclinometer, and measuring the distance from the transverse beam to the paved pavement by adopting a laser distance measuring sensor arranged on the transverse beam; calculating three-dimensional coordinates (x, y, z) of the position points of the paved pavement measured by each laser distance measuring sensor according to a spatial geometrical relation between each laser distance measuring sensor and the prism; projecting to obtain elevation z0 of the position point on a datum plane before paving; solving the difference between elevations z and elevation z0 to obtain the paving thickness; and judging whether the paving thickness at the position point accords with the control standard, otherwise, transmitting alarm information. The method is mainly applied to road construction quality control.
Owner:TIANJIN UNIV

Motor grader and control system therefore

A motor grader has a control system in which the manner of controlling the blade position differs depending upon whether the blade is to be moved vertically or is to be maintained at a generally constant level and cross slope. First and second hydraulic valves control the flow of hydraulic fluid to the first and second hydraulic cylinders which raise and lower respective ends of the blade. An inclinometer provides an inclinometer output indicating the inclination of the blade along its length with respect to horizontal. The control system includes a first hydraulic cylinder position sensor for determining the extension of the first hydraulic cylinder. The control system further includes a control that is responsive to a control input specifying the desired height and cross slope of the blade, to the first hydraulic cylinder position sensor, and to the inclinometer output. The control provides valve control signals to the first and second hydraulic valves. The control provides a first valve control signal to the first hydraulic valve in dependence upon a desired height specified by the control input, and the control provides a second valve control signal to the second hydraulic valve in dependence upon the inclinometer output and upon the cross slope specified by the control input. However, when the blade is to be moved upward or downward with the retraction or extension of the first cylinder, the control provides the second valve control signal to the second hydraulic valve in dependence upon the first hydraulic cylinder position sensor such that the second hydraulic cylinder retracts and extends with the first hydraulic cylinder, maintaining the cross slope angle of the blade as a constant.
Owner:CATERPILLAR TRIMBLE CONTROL TECH

Well system

A drilling system includes a work string supporting a bottom hole assembly. The work string including lengths of pipe having a non-metallic portion. The work string preferably includes a composite umbilical having a fluid impermeable liner, multiple load carrying layers, and a wear layer. Multiple electrical conductors and data transmission conductors are embedded in the load carrying layers for carrying current or transmitting data between the bottom hole assembly and the surface. The bottom hole assembly includes a bit, a gamma ray and inclinometer instrument package, a propulsion system with resistivity antenna and steerable assembly, an electronics section, a transmission, and a power section for rotating the bit. The electrical conductors in the composite umbilical provide power to the electronics section and may provide power to the power section. The data transmission conduits in the composite umbilical transmit the data from the downhole sensors to the surface where the data is processed. The propulsion system includes two or more traction modules connected by rams disposed in cylinders for walking the bottom hole assembly up and down the borehole. The propulsion system includes a steerable assembly, controlled from the surface, for changing the trajectory of the borehole.
Owner:HALLIBURTON ENERGY SERVICES INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products