Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

24827 results about "Microcomputer" patented technology

A microcomputer is a small, relatively inexpensive computer with a microprocessor as its central processing unit (CPU). It includes a microprocessor, memory and minimal input/output (I/O) circuitry mounted on a single printed circuit board(PCB). Microcomputers became popular in the 1970s and 1980s with the advent of increasingly powerful microprocessors. The predecessors to these computers, mainframes and minicomputers, were comparatively much larger and more expensive (though indeed present-day mainframes such as the IBM System z machines use one or more custom microprocessors as their CPUs). Many microcomputers (when equipped with a keyboard and screen for input and output) are also personal computers (in the generic sense).

Device for diagnosing physiological state and device for controlling the same

PCT No. PCT/JP96/01254 Sec. 371 Date Apr. 2, 1997 Sec. 102(e) Date Apr. 2, 1997 PCT Filed May 13, 1996 PCT Pub. No. WO96/35368 PCT Pub. Date Nov. 14, 1996The present invention relates to a device for diagnosing physiological state based on blood pulse waves detected in the body. It is the objective of the present invention to provide a device which correctly diagnoses the current physiological state based on changes in physiological state measured over a specified period of time in the past while taking into consideration the cyclical variation exhibited in physiological state. In order to realize this objective, the device according to the present invention has as its main components: blood pulse wave detector 381 and stroke-volume-per-beat measurer 382 which respectively detect blood pulse wave and stroke volume in the body; blood pulse wave extraction memory 386 which extracts characteristic information from the detected blood pulse wave; memory 383 in which the physiological state calculated from the stroke volume and this characteristic information is stored; output portion 385 which outputs an alarm; and microcomputer 387 which controls each part inside the device. The microcomputer calculates the circulatory parameters based on characteristic information obtained from the waveform extraction memory, and stores the parameters in memory at specified time intervals. At these times, microcomputer 387 calculates the circulatory parameters from the stroke volume per beat and the characteristic information of the blood pulse wave at specified time intervals, and stores the parameters in memory 383. Further, microcomputer 387 reads out from memory 383 the circulatory parameters from a specified time interval in the past, and calculates the average value and standard deviation. Microcomputer 387 then determines whether or not the current circulatory parameters are within a specified range determined by their average value and standard deviation. When the circulatory parameters are determined to be outside this range, microcomputer 387 controls output portion 385 to sound an alarm.
Owner:SEIKO EPSON CORP

Patient-worn energy delivery apparatus

A patient-worn energy delivery apparatus for imparting electrical therapy to the body of a patient responsive to an occurrence of a treatable condition includes a voltage converter for converting electrical energy from an initial voltage to a final voltage, and a defibrillator electrically coupled between the converter and the patient and having an energy reservoir for receiving the electrical energy. The defibrillator produces preshaped electrical pulses such as defibrillation pulses and cardioversion pulses. The apparatus additionally includes an energy delivery controller electrically coupled to the patient and the converter and the defibrillator. The controller causes the converter to provide the electrical energy to the defibrillator at a specific charging rate in response to an energy level in the reservoir. The apparatus may include a plurality of electrodes interposed between the defibrillator and the patient and each electrode preferably has an impedance reducing means contained therein. One embodiment of the apparatus may include a H-bridge to produce a positive-going pulse segment and the negative-going pulse segment within the biphasic exponential signals. The apparatus periodically measures the energy as it is being delivered to the patient and can pre-emptively stop or truncate the pulse in the event an error condition is detected, such as an overvoltage condition or if the energy level approaches a predetermined level. The electrical components which store and release the energy minimize the size and expense of the apparatus, while isolating the microcomputer from the high energy levels as the therapeutic pulse is delivered.
Owner:ZOLL MEDICAL CORPORATION

Passive physiological monitoring (P2M) system

Passive Physiological monitoring apparatus and method have a sensor for sensing physiological phenomenon. A converter converts sensed data into electrical signals and a computer receives and computes the signals, and outputs computed data for real-time interactive display. The sensor is a piezoelectric film of polyvinylidene fluoride. A band-pass filter filters out noise and isolates the signals to reflect data from the body. A pre-amplifier amplifies signals. Signals detected include mechanical, thermal and acoustic signatures reflecting cardiac output, cardiac function, internal bleeding, respiratory, pulse, apnea, and temperature. A pad may incorporate the PVDF film and may be fluid-filled. The film converts mechanical energy into analog voltage signals. Analog signals are fed through the band-pass filter and the amplifier. A converter converts the analog signals to digital signals. A Fourier transform routine is used to transform into the frequency domain. A microcomputer is used for recording, analyzing and displaying data for on-line assessment and for providing realtime response. A radio-frequency filter may be connected to a cable and the film for transferring signals from the film through the cable. The sensor may be an array provided in a MEDEVAC litter or other device for measuring acoustic and hydraulic signals from the body of a patient for field monitoring, hospital monitoring, transport monitoring, home, remote monitoring.
Owner:HOANA MEDICAL

Universal serial bus (USB) RAM architecture for use with microcomputers via an interface optimized for integrated services device network (ISDN)

A RAM-based interrupt-driven interface device is disclosed for establishing a communication link between a universal serial bus (USB) host and a microcontroller device for providing a control function, the interface device being operative to receive digital information in the form of command, data and control packets from the host and to process the packets and communicate the processed digital information to the microcontroller device, and in response thereto, the microcontroller device being operative to communicate digital information to the interface device for processing and transfer thereof to the host. The interface device includes means for receiving a command generated by the host through a USB bus, means for storing the host-generated command and for generating an interface device interrupt signal upon storage of said host-generated command for use by the microcontroller device in responding to the host-generated command, a microcontroller bus for transferring microcontroller information and the interface device interrupt signal between the interface device and the microcontroller device. The interface device further includes means for receiving a microcontroller command from the microcontroller device in response to said interface device interrupt signal and means for storing the microcontroller command and it is operative to generate a microcontroller device interrupt signal upon storage of the microcontroller command for use by the interface device in developing an address for identification of the interface device to the host during subsequent communications therebetween, wherein during communication between the host and the interface device, the interface device-developed address is used by the interface device to identify host-provided information in the form of packets, and upon processing of the host-provided information, to provide the microcontroller device with the necessary information to allow it to respond to the host thereby allowing a generic microcontroller device to be flexibly interfaced with a USB, host for communication therebetween.
Owner:SK HYNIX INC

Microcomputer-controlled AC power switch controller and DC power supply method and apparatus

An AC controller which provides programmable switching of AC power flow, together with producing a source of DC power for operating the AC controller. The AC controller is connected in series with only one side of the AC power source and the AC load. The AC controller utilizes a thyristor for AC power control switching. During the operation, the AC controller steals a small portion of each half-cycle of the AC power to provide DC power to the AC controller. The AC controller enables the flow of AC current by providing a gate current pulse at any predetermined time during the half cycle. Once the thyristor is ON, the AC current flows through the thyristor until the AC cycle is at or near zero. To provide an OFF state, the AC controller does not provide a gate current pulse. The AC controller uses an microcontroller for the programmable capability. The AC controller can be programmed to provide a flashing light function, a time delay off mode, an automatic fade mode, a dimming function, a burglar deterrent function, and a time delay dim function. With a three-position switch which can replace existing types of wall switches, three modes of operation are achieved: ON, OFF, and MODE. The mode position initiates operation of the special function of the controller.
Owner:BISHEL RICHARD A

Intelligent health watch for automatically measuring and recording health data and intelligent health system

ActiveCN103529684ASimple methodMeet the needs of daily health managementMechanical clocksEvaluation of blood vesselsMicrocomputerMicrocontroller
The present invention provides an intelligent health watch for automatically measuring and recording health data and an intelligent health system, wherein the intelligent health watch comprises the following components: a single-chip microcomputer module which is used for controlling operation of the intelligent health watch; a display module which is connected with the single-chip microcomputer module; a dynamic monitoring module which is used for tracking multidirectional motion and is connected with the single-chip microcomputer module; and a data acquiring module which is used for acquiring physiological and non-physiological data of the user and is connected with the single-chip microcomputer module. The intelligent health watch settles the insufficiencies in the prior health data management method, and provides a way which is convenient and can fully satisfy daily health management requirement. The intelligent health watch has the following functions: teaching and helping to exercise, reminding to perform daily activity and take medicine, checking the physiological condition accurately at any time and timely, recording and reporting in a diversified manner, automatically assisting and asking for help in emergency, etc.
Owner:GOOD BA BA TECH GROUP

Battery capacity measuring and remaining capacity calculating system

A battery capacity measuring device in accordance with the present invention has a fully-charged state detector (80e), a detected current integrator (80a), a divider (80b), and a corrector (80c) incorporated in a microcomputer (80). The fully-charged state detector detects that a battery is fully charged. The detected current integrator integrates current values that are detected by a current sensor during a period from the instant the battery is fully charged to the instant it is fully charged next. The divider divides the integrated value of detected current values by the length of the period. The corrector corrects a detected current using the quotient provided by the divider as an offset. Furthermore, a remaining battery capacity calculating system comprises a voltage detecting unit (50), a current detecting unit (40), an index calculating unit, a control unit, and a calculating unit. The voltage detecting unit detects the voltage at the terminals of a battery. The current detecting unit detects a current flowing through the battery. The index calculating unit calculates the index of polarization in the battery according to the detected current. The control unit controls the output voltage of an alternator so that the index of polarization will remain within a predetermined range which permits limitation of the effect of polarization on the charged state of the battery. When the index of polarization remains within the predetermined range, the calculating unit calculates the remaining capacity of the battery according to the terminal voltage of the battery, that is, the open-circuit voltage of the battery.
Owner:TOYOTA JIDOSHA KK +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products