Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.

1458results about "Temperature control without auxillary power" patented technology

Management of a thermostat's power consumption

An HVAC system comprises a programmable wireless thermostat and a remote receiver unit. The thermostat includes a user interface having one or more displays, user input devices, such as buttons, sliders, or a touch screen, and a backlight. The thermostat may include a proximity sensor, wherein the user interface is controlled based on a user's presence near the thermostat. A thermostat controller enters into a reduced energy consumption mode and switches the user interface to an idle state when the proximity sensor indicates a lack of user proximity for a predetermined duration. When the proximity sensor indicates user proximity, the controller exits the reduced energy consumption mode and switches the user interface to an active state. During the reduced energy consumption mode, the user interface may be concealed when the user interface is in a housing which is transparent when backlit but is opaque otherwise.

Sensor-Based Occupancy and Behavior Prediction Method for Intelligently Controlling Energy Consumption Within a Building

A method for controlling energy consumption within a building includes providing at least one environment sensing device and at least one energy consumption sensing device associated with the building. Current data is collected from the environment sensing device and the energy consumption sensing device along with associated time-of-day data. A value of a future energy consumption parameter is predicted based upon the collected current data, the associated time-of-day data, and historic data collected from the environment sensing device and the energy consumption sensing device. A profile of future costs per unit of energy consumption as a function of time is determined. Energy consumption is controlled dependent upon the predicted future energy consumption parameter value and the determined profile of energy consumption costs.

Wireless thermostat

A system for remotely controlling an ambient temperature in a building is provided. The system comprises a thermostat, a computing device, and a thin client. The thermostat has one or more settings and is equipped for wireless communication. The computing device is equipped for wireless communication with the thermostat. The thin client device is remotely located from the thermostat and operatively coupled to the computing device through a wide area network. The thin client device permits manipulation of the one or more settings which are wirelessly communicated from the computing device to the thermostat such that the ambient temperature of the building is remotely controlled.


An thermostat 10 includes an improved user interface, including automatic scheduling, remote control, system failure warning messages, and Energy Star compliance messages. Diagnostics can be provided without additional communication links to the thermostat. A sub-base accepts multiple thermostats and uses color coded terminals to ease installation. Glow-in-the-dark features reduce power needs. In one embodiment, thermostats are coupled to AC power sources and communicate using wireless communications to control an HVAC system. A dampered system can be effected through a thermostat that communicates directly with zoned dampers.
Owner:PRO1 IAQ

Thermostat with adjustable color for aesthetics and readability

The thermostat includes a housing having at least a portion thereof illuminated by a light that changes color via a manual input. The light illuminates the display for easy readability while the variable color of the light allows a user to match the appearance of the thermostat to best complement the surrounding décor. User input elements provide for the manual adjustment of one or more characteristics of the light, such as visible color of the light. The light source comprises at least one LED for displaying a plurality of colors. In this case, to change the color of the light illuminating the translucent portion of the housing or backlighting the display, electronics within the thermostat control the drive signals to the LED in order to operate the LED to provide the desired color. The invention also contemplates filtering the light and manually adjusting the filtering to provide the desired aesthetics.

Rotatable thermostat

A thermostat that can display information in multiple different orientations is provided. The thermostat includes a housing, a display, and an input device. As the housing is mounted in a particular orientation, the thermostat changes the orientation of the information for properly displaying same to a user. This is accomplished by sensing the orientation of the housing in one embodiment, and through user selection of a desired orientation in another embodiment. A separate display and input device(s) are provided in one embodiment, and a combined touch screen display and input device is provided in another embodiment.

Proportional valve with shape memory alloy actuator

A proportional valve is disclosed for controlling the outlet pressure of a fluid flowing therethrough. The valve comprises a valve body having an inlet port and an outlet port for the fluid. The valve also has an inner chamber, within which there is formed a valve seat that may be opened and closed variably by a shutter axially movable from and towards the valve seat. Movement of the shutter is controlled by a shape memory alloy (SMA) actuating member operating antagonistically to an elastic member, the temperature of the fluid being lower than the transition temperature of the shape memory alloy. The actuating member and the elastic member are connected to the body valve at opposite sides relative to the valve seat. A power control circuit is also provided for circulating an electric current through the actuating member so as to heat the same by Joule effect from a temperature lower than the transition temperature to one that is higher. At least one vent hole is formed in the valve body for putting a portion of the chamber upstream of the valve seat into fluid communication with the outside or a collection network. The actuating member is housed in that portion of chamber corresponding to the inlet port of the fluid, whereby a continuous flow of fluid around the actuating member is ensured for accelerating the cooling process. A closed-loop control circuit for the power control circuit controls the circulating current as a function of a pressure signal generated by fluid pressure sensing means and in such a way as to offset the retarding effect produced by the fluid during heating of the actuating member.

Managing an environment according to environmental preferences retrieved from a personal storage device

According to the present invention, environment indicators computed for a particular environment from among multiple environments are converted into a common transmittable data format. The environment indicators are transmitted in the common transmittable data format to a data processing system, wherein the data processing system has access to a personal storage device proffered by a particular user. An environment sensitivity profile for the particular user associated with the particular environment, is retrieved from the personal storage device to the data processing system. An environment indicator analyzer application executing on the data processing system analyzes the multiple environment indicators received at the data processing system according to the environmental sensitivity profile and determines control signals for adjusting multiple environmental control systems that control the particular environment.

Heated or cooled dishware and drinkware

An actively heated mug, travel mug, baby bottle, water bottle or liquid container is provided. The mug, travel mug, baby bottle, water bottle or liquid container can include a body that receives a liquid therein and a heating or cooling system at least partially disposed in the body. The heating or cooling system can include one or more heating or cooling elements that heat a surface of the receiving portion of the body and one or more energy storage devices. The mug, travel mug, baby bottle, water bottle or liquid container can include a wireless power receiver that wirelessly receives power from a power source and control circuitry configured to charge one or more power storage elements and to control the delivery of electricity from the one or more power storage elements to the one or more heating or cooling elements. The mug, travel mug, baby bottle, water bottle or liquid container also can have one or more sensors that sense a parameter of the liquid or sense a parameter of the heating or cooling system and communicates the sensed information to the control circuitry. The control circuitry can turn on, turn off, and / or operate the heating or cooling element to actively heat or cool at least a portion of the body to maintain the liquid in a heated or cooled state generally at a user selected temperature setting based at least in part on the sensed parameter information. The mug, travel mug, baby bottle, water bottle or liquid container can also be paired with a remote device or mobile electronic device to send or receive communications or commands.

Building control unit method and controls

Embodiments of the invention provide thermostat controls having improved tactile feedback. According to one embodiment, a thermostat includes a bottom member, a switch, a top member, and a motion guiding member or assembly that operationally couples the top member with the bottom member so that the top member is inwardly pressable by a user relative to the bottom member to allow the thermostat to receive input from the user by contacting the switch with a component of the top member or the bottom member. The motion guiding member or assembly contacts the top member near its outer periphery to control the inward motion of the top member relative to the bottom member to provide the improved tactile feedback.

Beverage dispenser having selectable temperature

The present invention dispenses hot coffee or other beverage by the cup at a selected temperature, which can be varied from cup-to-cup. The beverage is brewed in a conventional way, and in one embodiment is stored in a conventional holding tank at elevated temperature. The holding tank communicates with two smaller reservoirs. A quantity of beverage is stored in a first reservoir at an elevated temperature, at or above the maximum desired dispensing temperature. A second quantity of beverage is cooled and stored in a second reservoir at a lower temperature, at or below the minimum desired dispensing temperature. When a cup of beverage is to be dispensed, the temperature is selected, and a quantity of beverage is dispensed from each of the reservoirs, proportioned so that the resulting dispensed beverage is at the selected temperature. In another embodiment, the first reservoir is omitted, and beverage from the holding tank provides the elevated temperature beverage for mixing. In several other embodiments, no cooling mechanism is needed. Instead, the holding tank is at a cooler temperature than the lowest vend temperature, and the beverage must be heated to the hot reservoir temperature and, in one embodiment, the cold reservoir temperature. In another embodiment, the holding tank functions as a cold reservoir. In still another embodiment requiring no heaters, the holding tank is eliminated, and the beverage is held in insulated chambers at the higher and lower temperatures.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products