Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

1132 results about "Operating energy" patented technology

Operating Energy In Buildings. The operating energy of a building is “the amount of energy that is consumed by a building to satisfy the demand for heating, cooling, ventilation, lighting, equipment, and appliances” (Canadian Architect).

Heating and cooling control methods and systems

The present invention is related to the field of heating, ventilation and air conditioning (HVAC). More particularly, the present invention is related to methods and systems for controlled heating and cooling in order to reduce costs and the carbon footprint of said heating and cooling by optimizing the use of fresh air ventilation. The present invention is directed to mathematical algorithms incorporated into a controller and a method of determining control signals that are dependent on said mathematical algorithms and user programming that integrates information from multiple sensors, thermostats as well as weather information. Used in any home or building, the controller controls heating, cooling and ventilation systems in order to reduce costs and the carbon footprint of said heating and cooling by optimizing the use of fresh air ventilation. The controller works with typical HVAC systems generally in buildings and homes. The Smart-Stat algorithms are programmed into the controller and enable the controller to identify user-determined set-points alongside data from one or multiple internal temperature sensors. The user-determined set-points are also linked to time of day and day of week in a manner typical for typical thermostat devices available today. In such typical thermostat devices the controller will call for cooling or heating depending on the set points and conditions determined by the sensors in the building. The present invention is capable of interrupting the call for cooling or heating depending on whether the mathematical algorithms identify suitable outside weather conditions that permit the use of outside air cooling or outside air heating. Thus the call for heating or cooling can be redirected to call for ventilation instead of heating or cooling.

Method and apparatus for remotely monitoring a site

The present invention is directed to providing systems and methods for remotely monitoring sites to provide real time information which can readily permit false alarms to be distinguished, and which can identify and track the precise location of an alarm. In exemplary embodiments, monitoring capabilities such as intrusion/fire detection and tracking capabilities, can be implemented through the use of multistate indicators in a novel interface which permits information to be transmitted using standard network protocols from a remote site to a monitoring station in real-time over preexisting communication networks, such as the Internet. A wireless network can also be established using browser encapsulated communication programs (for example, active X control, Java applets, and so forth) to transmit data packets which comply with any standard wireless local area network protocol. Communications can thereby be established between a web server embedded in a centrally located host monitoring station and a separate security panel deployed in each of the buildings to be remotely monitored. In exemplary embodiments, communications can be handed off from the centrally located host monitoring station to a mobile monitoring station (for example, to a laptop computer in a responding vehicle, such as a police or fire vehicle). The handoff can be such that direct communications are established between a security panel site being monitored and the laptop, or over, for example, a cellular network or indirect communications can be established via the host monitoring station.

Using a derived table of signal strength data to locate and track a user in a wireless network

A method for locating a user in a wireless network is disclosed. A mobile computer seeking to determine its location within a building detects the signal strength of one or more wireless base stations placed at known locations throughout the building. The mobile computer uses this measured signal strength to determine its location via a signal-strength-to-location table look-up. A table of known locations within the building and the base station signal strength at those locations is searched to find the most similar stored signal strength to the signal strength detected. The location corresponding to the most similar stored signal strength is determined to be the current location of the mobile computer. Alternatively, a number of signal strengths from the table can be used and the corresponding locations can be spatially averaged to determine the location of the mobile computer. The table can be derived empirically, by placing a mobile computer at the known locations and detecting the signal strength of the wireless base stations at those locations, or the table can be derived mathematically by taking into account a reference signal strength, the distance between the reference point and the known location, and the number of walls between the reference point and the known location. As an alternative, the base stations can detect the signal strength of the mobile computer. In such a case, the table would relate a known position of the mobile computer to the signal strength of the mobile computer at that location as detected by the one or more base stations.

Method and system for airport security

A method and system for airport or other building security where passengers or persons entering a building approach a check-in point or check-in counter and must undergo a positive identification (ID) by fingerprint scan, retinal scan, or an other means of positive identification. A digital photograph can then be taken of the person. This data plus the positive ID data and optional data about the person including a scan of a government supplied ID like a drivers license or passport is entered in a database and checked against various law enforcement databases such as FBI or others for law enforcement interest in the person. The person is given an electronic smartcard that has wireless capability. The person carries the smartcard while in the airport or building. The system is notified when the person enters a secure gate area, boards or leaves an aircraft, etc. In addition, the system can determine if a person is carrying more than one smartcard or if a card has been abandoned. The system detects and tracks any undesirable person in the airport or building an provides a means for apprehending the person by security or law enforcement personnel. In addition, immigration or customs can be notified about any undesirable person arriving in an airport. The system allows airline personnel and security personnel to know when an unexpected or unwanted event or person is in the system.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products