Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

640 results about "Image Inspection" patented technology

Memory-controller-embedded apparatus and procedure for achieving system-directed checkpointing without operating-system kernel support

System-directed checkpointing is enabled in otherwise standard computers through relatively straightforward enhancements to the computer's memory controller. Different embodiments of the invention can be used to support: local and remote post-image checkpointing using a memory-resident address buffer for storing the addresses of modified data blocks, either with or without requiring the processor caches to be flushed at each checkpoint; local and remote post-image checkpointing using either memory- or I / O-resident buffers for both the addresses and the data associated with blocks modified since the last checkpoint and supporting background buffer-to-shadow copying; remote and local post-image checkpointing using bit-map memories thereby avoiding the need for either address or data buffers while still supporting background data copying and either with or without requiring caches to be flushed to effect a checkpoint; local post-image checkpointing using a two-bit-per-memory-block state memory that eliminates the need for any data to be copied from one memory location to another; and pre-image local checkpointing again either with or without requiring caches to be flushed for checkpointing purposes. Since most of these implementations have advantages and disadvantages over the others and since similar mechanisms are used in the memory controller for all of these options, the controller can be implemented to support all of them with a hardwired or settable status register defining which is to be supported in a given situation. Alternatively, since some of these implementations require somewhat less extensive memory controller enhancements, the controller can be designed to support only one or a small subset of these embodiments with a correspondingly smaller perturbation to its more standard implementation.
Owner:OSHANTEL SOFTWARE

Detection of phase defects on photomasks by differential imaging

A method for detecting phase features or phase defects on photomasks for optical lithography is described. The asymmetric imaging behavior through focus of defects or features with a phase other than 0° or 180° is used to distinguish them from other features on the mask. The mask is inspected at equally spaced positions about an optimum focus in both positive and negative directions. The images are subtracted from one another to produce a differential image of the mask. While opaque features as well as transmitting features at 0° and 180° behave identically at positive and negative defocus, thus leading to a zero-valued differential image, the focus asymmetry of phase defects and features produces a non-zero differential image from which these phase defects and features can be located. By comparing the locations on the mask for which a non-zero differential image is obtained with the designed data for the mask, the phase defects can be sorted from the phase features and the absence of phase features can be detected. Additional image processing can be applied to verify the integrity of the phase features. The differential image inspection technique can be implemented on existing optical inspection tools by employing a two-pass inspection performed at positive and negative defocus in sequence. In addition, a new apparatus with parallel inspection optics is described for inspecting the mask at positive and negative focus simultaneously.
Owner:IBM CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products