Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1413 results about "Half cycle" patented technology

A half cycle timing path is one in which launch and capture happen on different clock edges. A half cycle path can be in terms of both setup and hold. However, normally, in technical terms half cycle path is the one which has setup check getting formed as half cycle. For instance, following are some of the examples of half cycle timing paths:

Switching power converter and method of controlling output voltage thereof using predictive sensing of magnetic flux

A switching power converter and method of controlling an output voltage thereof using predictive sensing of magnetic flux provides a low-cost switching power converter via primary-side control using a primary-side winding. The power converter has improved immunity to parasitic phenomena and other variations within the power converter components. An integrator is used to generate a voltage analog that represents magnetic flux within a power magnetic element via an integration of a voltage on a primary-side winding of the power magnetic element. A detection circuit detects the end of a half-cycle of post-conduction resonance that occurs in the power magnetic element subsequent to the energy level in the power magnetic element reaching zero. The voltage of the integrator is stored at the end of the post-conduction resonance half-cycle and is used to determine a sampling point prior to or equal to the start of post-conduction resonance in a subsequent switching cycle of the power converter (which is the predicted zero-energy storage point of the power magnetic element). The primary-side winding voltage is then sampled at the sampling point, providing an indication of the output voltage of the power converter. By predicting the zero-magnetic-energy storage point, the output voltage of a power converter operating in discontinuous or boundary conduction mode can be accurately controlled without being affected by parasitic phenomena or variations in circuit performance over time, input voltage and temperature.
Owner:MICROCHIP TECH INC

Bridgeless boost converter with PFC circuit

A boost type power supply circuit for providing a DC output voltage comprising first and second semiconductor switches coupled between respective input lines and a common connection; an AC input voltage from an AC source being supplied across the input lines; first and second diodes coupled in series with respective ones of the switches; third and fourth diodes coupled across respective ones of the switches in a free-wheeling relationship with the switches; an inductance coupled in at least one of the input lines; a controller for controlling the conduction times of the switches by providing a pulse width control signal to each of the switches; wherein the controller turns on at least one of the switches during a positive half cycle of the AC voltage to allow energy storage in the inductance and turns off the at least one switch to allow the energy stored in the inductance to be supplied to an attached load through one of the first and second diodes and one of the third or fourth diodes; and the controller turns on at least one of the switches during a negative half cycle of the AC voltage to allow energy storage in the inductance and turns off at least one switch to allow the energy stored in the inductance to be supplied to the attached load through one of the first and second diodes and one of the third and fourth diodes. The controller determines an on-time and an off-time of a pulse of the pulse width modulated control signal during each half cycle of the AC voltage, the on-time and off-time of the pulse being controlled to regulate said output voltage and to provide power factor correction of said AC input voltage, based on either voltage sensing or current sensing.
Owner:INTERNATIONAL RECTIFIER COEP

Arc fault detector with circuit interrupter

There is here disclosed a method and apparatus for detecting the occurrence of arcing of a conductor by monitoring the current on an AC power line. The signal detected is split and directed along four separate paths to generate four signals having separate characteristics which represent the current in the line. A first path is for a signal representative of the current flowing in the line. A second path is for a signal having a pulse for each occurrence of a positive step change in current that is significant and has a di / dt value above a predetermined value. A third path is for a signal having a pulse for each occurrence of a negative step change in current that is significant and has a di / dt value above a predetermined value. A fourth path is for a signal having a voltage level representative of the broadband noise signal on the line. Using at least one of five different methods in combination with one of three input signals, a reference signal designated as "SINE" is generated. The SINE signal generated in combination with a CURRENT input is used to produce a control waveform "DELTA". DELTA can be represented as a relative value or as an absolute difference between the SINE and the CURRENT. Each occurring half cycle of the DELTA signal is analyzed by, for example, a micro-controller for specific identifiable characteristics found to indicate the presence of arcing. Upon the detection of arcing, an output signal can be generated to activate a circuit interrupting mechanism, sound an audio alarm and / or alert a central monitoring station.
Owner:LEVITON MFG
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products