Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

3699 results about "Magnetic components" patented technology

Apparatus and method for replacing a cardiac valve

An apparatus for replacing a cardiac valve having at least two native valve leaflets includes an expandable support member with oppositely disposed first and second ends and a main body portion extending between the ends. The first and second ends respectively include a plurality of upper and lower wing members respectively having first and second magnetic components. The wing members extend from the main body portion and are spaced circumferentially thereabout. Secured within the main body portion is a prosthetic valve having at least two valve leaflets. The second end further includes at least two strut members spaced apart from each other and attached to at least one commissural section of the prosthetic valve. The magnetic components are magnetically attracted to one another so that, when the apparatus is placed in the valve annulus, the wing members are pulled toward one another to secure the prosthetic valve in the annulus.
Owner:THE CLEVELAND CLINIC FOUND

Magnetic connector for electronic device

An electrical plug and receptacle relying on magnetic force to maintain contact are disclosed. The plug and receptacle can be used as part of a power adapter for connecting an electronic device, such as a laptop computer, to a power supply. The plug includes electrical contacts, which are preferably biased toward corresponding contacts on the receptacle. The plug and receptacle each have a magnetic element. The magnetic element on one or both of the plug and receptacle can be a magnet, which is preferably a permanent rare earth magnet although electromagnets may also be used. The magnetic element on the plug or receptacle that does not include a magnet is composed of ferromagnetic material. When the plug and receptacle are brought into proximity, the magnetic attraction between the magnet and its complement, whether another magnet or a ferromagnetic material, maintains the contacts in an electrically conductive relationship.
Owner:APPLE INC

Method and system for providing current balanced writing for memory cells and magnetic devices

A method and system for providing a magnetic memory is included. The method and system include providing at least one magnetic storage cell and at least one dummy resistor coupled with the at least one magnetic storage cell at least for a write operation of the at least one magnetic storage cell. Each of the at least one magnetic storage cell includes a magnetic element and a selection device coupled with the magnetic element. The magnetic element being programmed by a first write current driven through the magnetic element in a first direction and a second write current driven through the magnetic element in a second direction. The selection device is configured to be coupled between the magnetic element and the at least one dummy resistor.
Owner:SAMSUNG SEMICON

Method and system for using a pulsed field to assist spin transfer induced switching of magnetic memory elements

A method and system for providing and utilizing a magnetic memory are described. The magnetic memory includes a plurality of magnetic storage cells. Each magnetic storage cell includes magnetic element(s) programmable due to spin transfer when a write current is passed through the magnetic element(s) and selection device(s). The method and system include driving a first current in proximity to but not through the magnetic element(s) of a portion of the magnetic storage cells. The first current generates a magnetic field. The method and system also include driving a second current through the magnetic element(s) of the portion of the magnetic storage cells. The first and second currents are preferably both driven through bit line(s) coupled with the magnetic element(s). The first and second currents are turned on at a start time. The second current and the magnetic field are sufficient to program the magnetic element(s).
Owner:RENESAS ELECTRONICS CORP +1

Off-axis pinned layer magnetic element utilizing spin transfer and an MRAM device using the magnetic element

InactiveUS6888742B1Enhanced output signalWriting time becomes shortDigital storageMagnetic memorySpin transfer
A method and system for providing a magnetic element capable of being written in a reduced time using the spin-transfer effect while generating a high output signal and a magnetic memory using the magnetic element are disclosed. The magnetic element includes a ferromagnetic pinned layer, a nonmagnetic intermediate layer, and a ferromagnetic free layer. The pinned layer has a magnetization pinned in a first direction. The nonmagnetic intermediate layer resides between the pinned layer and the free layer. The free layer has a magnetization with an easy axis in a second direction. The first direction is in the same plane as the second direction and is oriented at an angle with respect to the second direction. This angle is different from zero and π radians. The magnetic element is also configured to allow the magnetization of the free layer to change direction due to spin transfer when a write current is passed through the magnetic element.
Owner:SAMSUNG SEMICON

Magnetic devices and methods for reshaping heart anatomy

InactiveUS20060015003A1Improve shrinkageIncreased total stroke volumeElectrotherapyHeart valvesCardiac surfaceHeart Part
Systems, methods and devices are provided for treating heart failure patients suffering from various levels of heart dilation. Heart dilation treated by reshaping the heart anatomy with the use of magnetic forces. Such reshaping changes the geometry of portions of the heart, particularly the right or left ventricles, to increase contractibility of the ventricles thereby increasing the stroke volume which in turn increases the cardiac output of the heart. The magnetic forces are applied with the use of one or more magnetic elements which are implanted within the heart tissue or attached externally and / or internally to a surface of the heart. The various charges of the magnetic forces interact causing the associated heart tissue areas to readjust position, such as to decrease the width of the ventricles. Such repositioning is maintained over time by the force of the magnetic elements, allowing the damaging effects of heart dilation to slow in progression or reverse.
Owner:MICARDIA CORP

Magnetic element utilizing spin-transfer and half-metals and an MRAM device using the magnetic element

A magnetic element that can be used in a memory array having high density includes a pinned layer, a half-metallic material layer, a spacer (or a barrier) layer and a free layer. The half-metallic material layer is formed on the pinned layer and preferably has a thickness that is less than about 100 â„«. The half-metallic material layer can be formed to be a continuous layer or a discontinuous on the pinned layer. The spacer (or barrier) layer is formed on the half-metallic material layer, such that the spacer (or barrier) layer is nonmagnetic and conductive (or insulating). The free layer is formed on the spacer (or barrier) layer and has a second magnetization that changes direction based on the spin-transfer effect when a write current passes through the magnetic element.
Owner:SAMSUNG SEMICON

Electromagnetic connector for electronic device

An electrical plug and receptacle relying on magnetic force from an electromagnet to maintain contact are disclosed. The plug and receptacle can be used as part of a power adapter for connecting an electronic device, such as a laptop computer, to a power supply. The plug includes electrical contacts, which are preferably biased toward corresponding contacts on the receptacle. The plug and receptacle each have a magnetic element. The magnetic element on one of the plug or receptacle can be a magnet or ferromagnetic material. The magnetic element on the other of the plug or receptacle is an electromagnet. When the plug and receptacle are brought into proximity, the magnetic attraction between the electromagnet magnet and its complement, whether another magnet or a ferromagnetic material, maintains the contacts in an electrically conductive relationship.
Owner:APPLE INC

Thermally stable magnetic elements utilizing spin transfer and an MRAM device using the magnetic element

A method and system for providing a magnetic element capable of being written using spin-transfer effect while being thermally stable and a magnetic memory using the magnetic element are disclosed. The magnetic element includes a first, second and third pinned layers, first and second nonmagnetic layers, a free layer and a nonmagnetic spacer layers. The first, second and third pinned layers are ferromagnetic and have first, second and third magnetizations pinned in first, second and third directions. The first and second nonmagnetic layers include first and second diffusion barriers, respectively. The first and second nonmagnetic layers are between the first and second pinned layers and the second and third pinned layers, respectively. The first and second pinned layers and the second and third pinned layers are antiferromagnetically coupled. The nonmagnetic spacer layer is conductive and resides between the free layer and the third pinned layer. In addition, performance can be further improved by doping Co containing ferromagnetic layers with Cr and / or Pt.
Owner:SAMSUNG SEMICON

Spin-transfer multilayer stack containing magnetic layers with resettable magnetization

A magnetic element for a high-density memory array includes a resettable layer and a storage layer. The resettable layer has a magnetization that is set in a selected direction by at least one externally generated magnetic field. The storage layer has at least one magnetic easy axis and a magnetization that changes direction based on the spin-transfer effect when a write current passes through the magnetic element. An alternative embodiment of the magnetic element includes an additional multilayer structure formed from a tunneling barrier layer, a pinned magnetic layer and an antiferromagnetic layer that pins the magnetization of the pinned layer in a predetermined direction. Another alternative embodiment of the magnetic element includes an additional multilayer structure that is formed from a tunneling barrier layer and a second resettable layer having a magnetic moment that is different from the magnetic moment of the resettable layer of the basic embodiment.
Owner:SAMSUNG SEMICON

Methods for providing a sub .15 micron magnetic memory structure

A method for providing a magnetic element is disclosed. The method includes providing at least one magnetic element layer and providing a hard mask structure for masking a portion of the at least one magnetic element layer. The hard mask structure is made from hard mask material(s) that are etchable for defining the hard mask structure. The hard mask structure also acts as a mask during definition of a width of the magnetic element. The method also includes defining the width of the magnetic element by removing a portion of the at least one magnetic element layer using the hard mask structure as a mask. The hard mask structure preferably acts as a polishing stop for a planarization step, such as a chemical mechanical polish, polishing resistant structures might be provided to improve planarization of a magnetic memory incorporating the magnetic element.
Owner:SAMSUNG SEMICON

Magnetic latching mechanism

A magnetic latch for a display of a laptop computer is disclosed. The latch uses magnetic attraction to maintain the display closed and uses magnetic repelling forces to pop-up the display when opened. The latch includes one or more magnetic elements in the body of the laptop and at least one magnetic element in the display. When the display is closed, the magnet element in the display is positioned adjacent the magnet element in the body having an opposite polarity so that the magnet elements are attracted to one another. To pop-up the display, the user moves the magnetic element in the display so that it meets the magnetic pole in the body having the same polarity. When these meet, the repelling force between them causes the display to open slightly so that a user can then readily open the display.
Owner:APPLE INC

Method and system for providing spin transfer tunneling magnetic memories utilizing non-planar transistors

A magnetic memory cell and a magnetic memory incorporating the cell are described. The magnetic memory cell includes at least one magnetic element and at least one non-planar selection device. The magnetic element(s) are programmable using write current(s) driven through the magnetic element. The magnetic memory may include a plurality of magnetic storage cells, a plurality of bit lines corresponding to the plurality of magnetic storage cells, and a plurality of source lines corresponding to the plurality of magnetic storage cells.
Owner:SAMSUNG SEMICON

Current driven switching of magnetic storage cells utilizing spin transfer and magnetic memories using such cells

A method and system for providing a magnetic memory is described. The method and system include providing a plurality of magnetic storage cells. Each of the plurality of magnetic storage cells includes a magnetic element and a selection transistor. The magnetic element may be programmed using spin transfer induced switching by a write current driven through the magnetic element. The selection transistor includes a source and a drain. The plurality of magnetic storage cells are grouped in pairs. The source of the selection transistor for one magnetic storage cell of a pair shares the source with the selection transistor for another magnetic storage cell of the pair.
Owner:SAMSUNG SEMICON

Spin transfer magnetic element having low saturation magnetization free layers

A method and system for providing a magnetic element that can be used in a magnetic memory is disclosed. The magnetic element includes pinned, nonmagnetic spacer, and free layers. The spacer layer resides between the pinned and free layers. The free layer can be switched using spin transfer when a write current is passed through the magnetic element. The magnetic element may also include a barrier layer, a second pinned layer. Alternatively, second pinned and second spacer layers and a second free layer magnetostatically coupled to the free layer are included. In one aspect, the free layer(s) include ferromagnetic material(s) diluted with nonmagnetic material(s) and / or ferrimagnetically doped to provide low saturation magnetization(s).
Owner:SAMSUNG SEMICON

Electronic device having magnetic latching mechanism

A magnetic latch for a display of a laptop computer is disclosed. The latch uses magnetic attraction to maintain the display closed and uses magnetic repelling forces to pop-up the display when opened. The latch includes one or more magnetic elements in the body of the laptop and at least one magnetic element in the display. When the display is closed, the magnet element in the display is positioned adjacent the magnet element in the body having an opposite polarity so that the magnet elements are attracted to one another. To pop-up the display, the user moves the magnetic element in the display so that it meets the magnetic pole in the body having the same polarity. When these meet, the repelling force between them causes the display to open slightly so that a user can then readily open the display.
Owner:APPLE INC

Current driven switching of magnetic storage cells utilizing spin transfer and magnetic memories using such cells

A method and system for providing a magnetic memory is described. The method and system include providing a plurality of magnetic storage cells. Each of the plurality of magnetic storage cells includes at least one magnetic element and a plurality of selection transistors. The at least one magnetic element is capable of being programmed using spin transfer induced switching by a write current driven through the at least one magnetic element. The at least one selection transistor is configured to allow the magnetic element to be alternately selected for writing and reading. Architectures for reading and writing to the magnetic storage cells are also described.
Owner:SAMSUNG SEMICON

Spin transfer magnetic element having low saturation magnetization free layers

A method and system for providing a magnetic element that can be used in a magnetic memory is disclosed. The magnetic element includes pinned, nonmagnetic spacer, and free layers. The spacer layer resides between the pinned and free layers. The free layer can be switched using spin transfer when a write current is passed through the magnetic element. The magnetic element may also include a barrier layer, a second pinned layer. Alternatively, second pinned and second spacer layers and a second free layer magnetostatically coupled to the free layer are included. In one aspect, the free layer(s) include ferromagnetic material(s) diluted with nonmagnetic material(s) and / or ferrimagnetically doped to provide low saturation magnetization(s).
Owner:SAMSUNG SEMICON

Method and system for providing a magnetic memory structure utilizing spin transfer

A method and system for providing a magnetic memory is described. The method and system include providing magnetic memory cells, local and global word lines, bit lines, and source lines. Each magnetic memory cell includes a magnetic element and a selection device connected with the magnetic element. The magnetic element is programmed by first and second write currents driven through the magnetic element in first and second directions. The local word lines are connected with the selection device of and have a first resistivity. Each global word line corresponds to a portion of the local word lines and has a resistivity lower than the first resistivity. The bit lines are connected with the magnetic element. The source lines are connected with the selection device. Each source line corresponds to a more than one of the magnetic memory cells and carries the first and second write currents.
Owner:RENESAS ELECTRONICS CORP +1

Spin barrier enhanced magnetoresistance effect element and magnetic memory using the same

ActiveUS7088609B2Reduce outer surfaceHigh areal resistanceNanomagnetismMagnetic-field-controlled resistorsDamping constantMagnetic memory
A method and system for providing a magnetic element that can be used in a magnetic memory is disclosed. The magnetic element includes pinned, spacer, free, and spin barrier layers. The spacer layer is nonmagnetic and resides between the pinned and free layers. The free layer can be switched using spin transfer when a write current is passed through the magnetic element. The free layer resides between the spacer layer and the spin barrier layer. The spin barrier layer is configured to reduce an outer surface contribution to a damping constant of the free layer. In one aspect, the spin barrier layer has a high areal resistance and may substantially eliminate spin pumping induced damping. In another aspect, the magnetic element also includes a spin accumulation layer between the spin barrier and free layers. The spin accumulation layer has a high conductivity, preferably being metallic, and may have a long spin diffusion length.
Owner:SAMSUNG SEMICON

Axial force null position magnetic bearing and rotary blood pumps which use them

A generally cylindrical rotor very closely confined between two rigid thrust bearing surfaces is radially suspended by an array of attracting or repelling magnets or by a combination of permanent magnets and ring shaped members composed of ferromagnetic material. The geometry permits very small spacing between magnetic components to achieve high radial stiffness. High magnetic axial forces exerted between the rotor and stationary component on one end of the rotor are counter-balanced by equal and opposite forces at the other end of the rotor. Precise positioning of the rotor in the location where the opposing axial magnetic forces counterballance each other yields a net magnetic axial force on the rotor of near zero, hence the reference to this as the null position. Wear resistant mechanical thrust bearings confine the rotor axially to maintain this position during rotatioin. Precisely balance the magnetic axial forces in the proper geometry with relation to the mechanical thrust bearings. Blood pumps utilizing this type of bearing are disclosed, including both axial flow pump and centrifugal flow pump configurations with high flow washing of the junction of the rotating and stationary parts to prevent thrombus accumulation.
Owner:JARVIK ROBERT

Method and system for providing spin transfer tunneling magnetic memories utilizing unidirectional polarity selection devices

A magnetic memory cell and a magnetic memory incorporating the cell are described. The magnetic memory cell includes at least one magnetic element and a plurality of unidirectional polarity selection devices. The magnetic element(s) are programmable using write current(s) driven through the magnetic element. The unidirectional polarity selection devices are connected in parallel and such that they have opposing polarities. The magnetic memory may include a plurality of magnetic storage cells, a plurality of bit lines corresponding to the plurality of magnetic storage cells, and a plurality of source lines corresponding to the plurality of magnetic storage cells.
Owner:GRANDIS

Multilayers having reduced perpendicular demagnetizing field using moment dilution for spintronic applications

A magnetic element is disclosed that has a composite free layer with a FM1 / moment diluting / FM2 configuration wherein FM1 and FM2 are magnetic layers made of one or more of Co, Fe, Ni, and B and the moment diluting layer is used to reduce the perpendicular demagnetizing field. As a result, lower resistance x area product and higher thermal stability are realized when perpendicular surface anisotropy dominates shape anisotropy to give a magnetization perpendicular to the planes of the FM1, FM2 layers. The moment diluting layer may be a non-magnetic metal like Ta or a CoFe alloy with a doped non-magnetic metal. A perpendicular Hk enhancing layer interfaces with the FM2 layer and may be an oxide to increase the perpendicular anisotropy field in the FM2 layer. The magnetic element may be part of a spintronic device or serve as a propagation medium in a domain wall motion device.
Owner:TAIWAN SEMICON MFG CO LTD

Method and system for providing a magnetic element and magnetic memory being unidirectional writing enabled

A method and system for providing a magnetic element and memory utilizing the magnetic element are described. The magnetic element includes a reference layer, a nonferromagnetic spacer layer, and a free layer. The reference layer has a resettable magnetization that is set in a selected direction by a magnetic field generated externally to the reference layer. The reference layer is also magnetically thermally unstable at an operating temperature range and has KuV / kBT is less than fifty five. The spacer layer resides between the reference layer and the free layer. In addition, the magnetic element is configured to allow the free layer to be switched to each of a plurality of states when a write current is passed through the magnetic element.
Owner:RENESAS ELECTRONICS CORP +1

Spin barrier enhanced dual magnetoresistance effect element and magnetic memory using the same

ActiveUS7057921B2Reduce outer surfaceHigh areal resistanceNanomagnetismMagnetic-field-controlled resistorsDamping constantMagnetic memory
A method and system for providing a magnetic element that can be used in a magnetic memory is disclosed. The magnetic element includes first pinned, spacer, free, spin barrier, and second pinned layers. The spacer layer is nonmagnetic and resides between the pinned and free layers. The free layer can be switched using spin transfer when a write current is passed through the magnetic element. The free layer resides between the spacer and spin barrier layers. The spin barrier layer is between the free and second pinned layers. The spin barrier layer is configured to reduce an outer surface contribution to the free layer damping constant. In one aspect, the spin barrier layer has a high areal resistance and may substantially eliminate spin pumping induced damping. In another aspect, the magnetic element also includes a spin accumulation layer between the spin barrier and free layers. The spin accumulation layer has a high conductivity and may have a long spin diffusion length.
Owner:SAMSUNG SEMICON
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products