Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.

21174results about How to "Low density" patented technology

Energy harvesting computer device in association with a communication device configured with apparatus for boosting signal reception

ActiveUS20130157729A1Improve consumer electronics hybrid consumer electronics performanceLow densityMaterial nanotechnologyEnergy efficient ICTCellular telephoneCommunication device
Disclosed embodiments comprise an energy harvesting computer device in association with a communication device comprising interactive user interface operatively configured with CMOS multiple antennas on chip for boosting signal receptions and for providing faster data transmission speed. Disclosed embodiment encompasses three modes of communications—the Cell phone, wireless Internet applications, and Global communication and media information. Embodiments provide communication apparatus operable to enhance mobile communication efficiency with touch sensitive display comprising energy harvesting platform in communication with a charging circuit board configured with memories, processors, sensors, and modules. Embodiments further provide a gaming device, a wireless media device configured with touch pads comprising sensors being embedded in silicon substrate and fused in nano-fiber/microfiber material having excellent electrical characteristics. Certain embodiments provide communication apparatus configured for voice enabled applications comprising human voice auditory operable to convert text into voice auditory and/or voice auditory into text applications.

Laser-produced porous surface

A method of fabricating a porous or partially porous three-dimensional metal article for use as a tissue ingrowth surface on a prosthesis. The porous article is formed using direct laser remelting in a cross section of a layer of metallic powder on a build platform without fusing thereto. The power, speed, spot size and beam overlap of the scanning laser is coordinated so that a predetermined porosity of the metallic powder can be achieved. Laser factors also vary depending from the thickness of the powder layer, type of metallic powder and size and size distribution of the powder particles. Successive depositing and remelting of individual layers are repeated until the article is fully formed by a layer-by-layer fashion. In an additional embodiment, a first layer of metallic powder may be deposited on a solid base or core and fused thereto.

Everted filter device

Everting filter devices and methods for using the devices, including using the devices as intra-vascular filters to filter thrombus, emboli, and plaque fragments from blood vessels. The filter devices include a filter body nominally tubular in shape and having a large proximal opening. The filter body can extend from a proximal first end region distally over the non-everted exterior surface of the filter, further extending distally to a distal-most region, then converging inwardly and extending proximally toward the filter second end region, forming a distal everted cavity. The degree of eversion of the filter can be controlled by varying the distance between the filter first end region near the proximal opening and the closed second end region. Bringing the filter first and second end regions closer together can bring filter material previously on the non-everted filter exterior to occupy the distal-most region. The everting process can also bring filter material previously in the distal-most position further into the distal everted cavity. The filter devices can be used to remove filtrate from body vessels, with the filtrate eventually occluding the distal-most region. The filter can then be further everted, bringing fresh, unoccluded filter material into place to provide additional filter capacity. Some everting filters have the capability of switching between occluding and filtering modes of operation, thereby allowing a treating physician to postpone the decision to use filtering or occluding devices until well after insertion of the device into the patient's body.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products