Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

447results about How to "Reduce partial pressure" patented technology

Methods of hyperdoping semiconductor materials and hyperdoped semiconductor materials and devices

Methods are disclosed for producing highly doped semiconductor materials. Using the invention, one can achieve doping densities that exceed traditional, established carrier saturation limits without deleterious side effects. Additionally, highly doped semiconductor materials are disclosed, as well as improved electronic and optoelectronic devices/components using said materials. The innovative materials and processes enabled by the invention yield significant performance improvements and/or cost reductions for a wide variety of semiconductor-based microelectronic and optoelectronic devices/systems. Materials are grown in an anion-rich environment, which, in the preferred embodiment, are produced by moderate substrate temperatures during growth in an oxygen-poor environment. The materials exhibit fewer non-radiative recombination centers at higher doping concentrations than prior art materials, and the highly doped state of matter can exhibit a minority carrier lifetime dominated by radiative recombination at higher doping levels and higher majority carrier concentrations than achieved in prior art materials. Important applications enabled by these novel materials include high performance electronic or optoelectronic devices, which can be smaller and faster, yet still capture or emit light efficiently, and high performance electronics, such as transistors, which can be smaller and faster, yet cooler.
Owner:YALE UNIV

Process and equipment for negative pressure benzene removal

The invention discloses a process and equipment for negative pressure benzene removal , belonging to technology and equipment for recovering resultant in the coking industry, in particular to technology and equipment for removing and recovering benzene contained in coke gas. To solve the problems existing in the prior art, the invention develops the process for non-steam and non-distillation debenzolization under the negative pressure operation condition is developed and designs a novel debenzolization tower thus the disadvantages of equipment and process for benzene removal by adopting tubefurnace for heating rich oil under normal pressure can be overcome. The invention mainly has the advantages that firstly, as benzene is removed by the negative pressure process, the boiling point of the benzene and the partial pressure of the benzene in gaseous phase are lowered, and the benzene can be removed without using direct steam for steaming and blowing, thus waste water generated by the steam is reduced and the environment can not be polluted; secondly, the productive rate of dry coal due to benzene removal is increased to be more than 1.35 percent from the original 1 percent, and the recovery ratio of the benzene is increased to be more than 35 percent; and thirdly, compared with the existing benzene removal process, the process reduces the energy consumption by more than 20 percent.
Owner:JINAN METALLURGICAL CHEM EQUIP CO LTD

Methods of hyperdoping semiconductor materials and hyperdoped semiconductor materials and devices

Methods are disclosed for producing highly doped semiconductor materials. Using the invention, one can achieve doping densities that exceed traditional, established carrier saturation limits without deleterious side effects. Additionally, highly doped semiconductor materials are disclosed, as well as improved electronic and optoelectronic devices / components using said materials. The innovative materials and processes enabled by the invention yield significant performance improvements and / or cost reductions for a wide variety of semiconductor-based microelectronic and optoelectronic devices / systems.Materials are grown in an anion-rich environment, which, in the preferred embodiment, are produced by moderate substrate temperatures during growth in an oxygen-poor environment. The materials exhibit fewer non-radiative recombination centers at higher doping concentrations than prior art materials, and the highly doped state of matter can exhibit a minority carrier lifetime dominated by radiative recombination at higher doping levels and higher majority carrier concentrations than achieved in prior art materials. Important applications enabled by these novel materials include high performance electronic or optoelectronic devices, which can be smaller and faster, yet still capture or emit light efficiently, and high performance electronics, such as transistors, which can be smaller and faster, yet cooler.
Owner:YALE UNIV

Rotary furnace low-order powdered coal pyrolysis upgrading method with coal gas circulation

The invention provides a rotary furnace low-order powdered coal pyrolysis upgrading method with coal gas circulation. The rotary furnace low-order powdered coal pyrolysis upgrading method comprises the following steps: heating and drying raw material powdered coal with the granularity less than or equal to 30mm to be 110-280 DEG C in a low-order powdered coal rotary drying system with dust collection, and removing 85% of coal dust with the granularity less than 0.5mm in the powdered coal; feeding the dried coal with the granularity of 0.5-30mm to a downstream rotary pyrolysis system to react at 500-700 DEG C so as to generate upgraded coal and a high-temperature oil gas; feeding the high-temperature upgraded coal to a rotary cooling passivating furnace for primary cooling and medium / low temperature passivation, further cooling by using a spiral cooling machine, spraying water, and discharging out the product; feeding the high-temperature oil gas into an oil gas recycling system, and performing temperature reduction separation, thereby obtaining coal tar, pyrolysis water and pyrolysis coal gas; preheating a part of the pyrolysis coal gas, circulating back to the pyrolysis furnace, and discharging out the rest part of the pyrolysis coal gas.
Owner:SHAANXI COAL & CHEM IND GRP SHENMU TIANYUAN CHEM IND +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products