Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

765 results about "Carrier lifetime" patented technology

A definition in semiconductor physics, carrier lifetime is defined as the average time it takes for a minority carrier to recombine. The process through which this is done is typically known as minority carrier recombination.

Methods of hyperdoping semiconductor materials and hyperdoped semiconductor materials and devices

Methods are disclosed for producing highly doped semiconductor materials. Using the invention, one can achieve doping densities that exceed traditional, established carrier saturation limits without deleterious side effects. Additionally, highly doped semiconductor materials are disclosed, as well as improved electronic and optoelectronic devices/components using said materials. The innovative materials and processes enabled by the invention yield significant performance improvements and/or cost reductions for a wide variety of semiconductor-based microelectronic and optoelectronic devices/systems. Materials are grown in an anion-rich environment, which, in the preferred embodiment, are produced by moderate substrate temperatures during growth in an oxygen-poor environment. The materials exhibit fewer non-radiative recombination centers at higher doping concentrations than prior art materials, and the highly doped state of matter can exhibit a minority carrier lifetime dominated by radiative recombination at higher doping levels and higher majority carrier concentrations than achieved in prior art materials. Important applications enabled by these novel materials include high performance electronic or optoelectronic devices, which can be smaller and faster, yet still capture or emit light efficiently, and high performance electronics, such as transistors, which can be smaller and faster, yet cooler.
Owner:YALE UNIV

Method for forming inverted-pyramid porous surface nanometer texture on polycrystalline silicon and method for manufacturing short-wave reinforcing solar cell

The invention discloses a method for forming an inverted-pyramid porous surface nanometer texture on polycrystalline silicon and a method for manufacturing a short-wave reinforcing solar cell. The method for forming the inverted-pyramid porous surface nanometer texture on the polycrystalline silicon and the method for manufacturing the short-wave reinforcing solar cell are suitable for the technical field of solar photovoltaic batteries. By means of a metal catalytic chemical corrosion method, a nanometer porous surface structure is formed on the polycrystalline silicon through HF, AgNO3, H2O2, HNO3 and other solutions, then partial samples are placed in a NaOH corrosive liquid with the concentration of 0.1-1% for surface modification of a nanometer inverted pyramid, a nanometer inverted pyramid silicon structure is formed, and the micro structure appearance of the nanometer inverted pyramid silicon structure is even and smooth, so that service life of a few effective charge carriers is greatly prolonged, and ultimately, in the nanometer texture surface structure, by means of changes of the thickness of a silicon nitride layer in the solar cell manufacturing process, a nanometer inverted pyramid silicon solar photovoltaic cell which is low in surface reflection rate and high in short wave spectrum response is prepared. The method for forming the inverted-pyramid porous surface nanometer texture on the polycrystalline silicon and the method for manufacturing the short-wave reinforcing solar cell are simple in process, convenient to operate, low in cost and suitable for industrial production.
Owner:SHANGHAI UNIV

Methods of hyperdoping semiconductor materials and hyperdoped semiconductor materials and devices

Methods are disclosed for producing highly doped semiconductor materials. Using the invention, one can achieve doping densities that exceed traditional, established carrier saturation limits without deleterious side effects. Additionally, highly doped semiconductor materials are disclosed, as well as improved electronic and optoelectronic devices / components using said materials. The innovative materials and processes enabled by the invention yield significant performance improvements and / or cost reductions for a wide variety of semiconductor-based microelectronic and optoelectronic devices / systems.Materials are grown in an anion-rich environment, which, in the preferred embodiment, are produced by moderate substrate temperatures during growth in an oxygen-poor environment. The materials exhibit fewer non-radiative recombination centers at higher doping concentrations than prior art materials, and the highly doped state of matter can exhibit a minority carrier lifetime dominated by radiative recombination at higher doping levels and higher majority carrier concentrations than achieved in prior art materials. Important applications enabled by these novel materials include high performance electronic or optoelectronic devices, which can be smaller and faster, yet still capture or emit light efficiently, and high performance electronics, such as transistors, which can be smaller and faster, yet cooler.
Owner:YALE UNIV

Ferro-nickel oxyhydroxide-modified bismuth vanadate photoelectrode and preparation method and application thereof

The invention discloses a ferro-nickel oxyhydroxide-modified bismuth vanadate photoelectrode and a preparation method and application thereof. The preparation method comprises the following steps: firstly, depositing bismuth oxyiodide on the surface of conductive glass, then coating the surface with the deposited bismuth oxyiodide with a dimethyl sulfoxide solution of vanadyl acetylacetonate, annealing, performing alkali soaking and rinsing with water to remove excessive vanadium pentoxide, and then drying to obtain a bismuth vanadate photoelectrode, and modifying ferro-nickel oxyhydroxide on the surface of the bismuth vanadate photoelectrode by adopting a cyclic voltammetry method in a three-electrode system, thus obtaining the ferro-nickel oxyhydroxide-modified bismuth vanadate photoelectrode. The invention further discloses applications of the ferro-nickel oxyhydroxide-modified bismuth vanadate photoelectrode in photoelectrocatalytic decomposition water. The prepared photoelectrode is used for producing hydrogen from photoelectrocatalytic decomposition water, can inhibit the compounding of photon-generated carriers, the service life of carriers generated by a BiVO4 photoelectrode can be effectively prolonged, and the oxygen evolution reaction on the surface of the photoelectrode can be promoted, so that the solar optic hydrogen conversion efficiency of a semiconductor photoelectrode can be improved.
Owner:HUANGHE S & T COLLEGE

Electro-thermal simulation method for FS (Field Stop) type IGBT (Insulated Gate Bipolar Transistor) transient temperature characteristic

The invention provides an electro-thermal simulation method for FS (Field Stop) type IGBT (Insulated Gate Bipolar Transistor) transient temperature characteristic. An FS type IGBT switching transient working process is actually tested and is analyzed by being combined with an IGBT working principle and a semiconductor physical principle to determine that the IGBT transient temperature characteristic is mainly influenced by life of internal excess carrier, so that the electro-thermal simulation method is established. The method comprises the following steps of: actually testing carrier life values extracted at different temperatures to acquire a relational expression of the carrier life and temperature; calculating through an empirical value formula to acquire a relational expression amongthreshold voltage, transconductance, emitter saturation and current as well as the temperature; and adding temperature related parameters into an FS type IGBT current tailing stage current analyticalexpression and a switching transient model equation set and calculating to acquire transient working waveform of the FS type IGBT at different temperatures. The electro-thermal model simulation method provided by the invention simultaneously has the advantages of simple parameter calculation and high accuracy.
Owner:NAVAL UNIV OF ENG PLA

Method for preparing vacuum zone melting high resistant silicon single crystal

The invention discloses a method for preparing vacuum zone melting high resistant silicon single crystal, comprising the two sequential major processes: polysilicon purification and crystal forming of silicon single crystal, wherein, the process of polysilicon purification comprises the steps of cleaning fire, charging, evacuating, preheating, melting materials heat sealing, growing narrow necks, shouldering, shoulder circuiting, equating diameter, ending and repeating; the process of crystal forming of silicon single crystal comprises the steps of cleaning fire, charging, evacuating, preheating, processing of chemicals, crystal seeding, shouldering, shoulder circuiting, equating diameter, ending and blowing out. With the method of the invention adopted to prepare silicon single crystal, electric resistivity, ultra-high purity, resistivity profile, uniformity of cross-section electric resistivity and minority carrier lifetime are greatly improved; purity of the silicon single crystal is above 11N, electric resistivity reaches 8000 omega/cm-30000omega/cm, uniformity of cross-section electric resistivity is less than 15%, and minority carrier lifetime is more than 600-1000Mus, thus greatly improving performance, stability and safety of the devices while realizing mass production of vacuum zone melting high resistant silicon single crystal.
Owner:峨嵋半导体材料研究所

Growth process for N-type solar energy silicon single crystal with minority carrier service life of larger than or equal to 1,000 microseconds

InactiveCN101724899ASolve the problem of low lifespanPractical growing methodPolycrystalline material growthBy pulling from meltCrystal orientationSingle crystal
The invention relates to a growth process for N-type solar energy silicon single crystal with minority carrier service life of larger than or equal to 1,000 microseconds. The appearance is in 6-8 inches, the (100) crystal orientation resistivity range is between 1 omega.cm and 20 omega.cm, the minority carrier service life of the surface and the section is larger than or equal to 1,000 microseconds, the clearance oxygen content [Oi] is smaller than or equal to 17.5ppma, and the substituted carbon content [Cs] is smaller than or equal to 0.5ppma. Phosphorus-doped block-shaped polycrystalline silicon is used as a raw material to prepare the N-type solar energy silicon single crystal. The process comprises the steps of: charging, heating, leading diameter, maintaining equal diameter, collecting, cooling, heating by a program, stably heating and melting the material; after a thermal field in melting silicon is stable, leading the thin diameter, lifting the tail part of a single crystal to the upper edge of a guide cylinder with the cooling time of not larger than three hours. The crystal growth process is practical, has high efficiency and low cost, can prepare the N-type single crystal silicon which is completely larger than or equal to 1,000 microseconds from the head part to the tail part by a CZ method, and creates an industrialized foundation for efficiency improvement of an efficient solar battery.
Owner:任丙彦 +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products