Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

3014 results about "Surface reflection" patented technology

Method and apparatus for calibration-free eye tracking using multiple glints or surface reflections

A system and method for eye gaze tracking in human or animal subjects without calibration of cameras, specific measurements of eye geometries or the tracking of a cursor image on a screen by the subject through a known trajectory. The preferred embodiment includes one uncalibrated camera for acquiring video images of the subject's eye(s) and optionally having an on-axis illuminator, and a surface, object, or visual scene with embedded off-axis illuminator markers. The off-axis markers are reflected on the corneal surface of the subject's eyes as glints. The glints indicate the distance between the point of gaze in the surface, object, or visual scene and the corresponding marker on the surface, object, or visual scene. The marker that causes a glint to appear in the center of the subject's pupil is determined to be located on the line of regard of the subject's eye, and to intersect with the point of gaze. Point of gaze on the surface, object, or visual scene is calculated as follows. First, by determining which marker glints, as provided by the corneal reflections of the markers, are closest to the center of the pupil in either or both of the subject's eyes. This subset of glints forms a region of interest (ROI). Second, by determining the gaze vector (relative angular or cartesian distance to the pupil center) for each of the glints in the ROI. Third, by relating each glint in the ROI to the location or identification (ID) of a corresponding marker on the surface, object, or visual scene observed by the eyes. Fourth, by interpolating the known locations of each these markers on the surface, object, or visual scene, according to the relative angular distance of their corresponding glints to the pupil center.
Owner:CHENG DANIEL +3

System and technique for retrieving depth information about a surface by projecting a composite image of modulated light patterns

InactiveUS7440590B1More detailed and large depth mappingLimited bandwidthProjectorsCathode-ray tube indicatorsInteraction interfaceTelecollaboration
A technique, associated system and program code, for retrieving depth information about at least one surface of an object. Core features include: projecting a composite image comprising a plurality of modulated structured light patterns, at the object; capturing an image reflected from the surface; and recovering pattern information from the reflected image, for each of the modulated structured light patterns. Pattern information is preferably recovered for each modulated structured light pattern used to create the composite, by performing a demodulation of the reflected image. Reconstruction of the surface can be accomplished by using depth information from the recovered patterns to produce a depth map/mapping thereof. Each signal waveform used for the modulation of a respective structured light pattern, is distinct from each of the other signal waveforms used for the modulation of other structured light patterns of a composite image; these signal waveforms may be selected from suitable types in any combination of distinct signal waveforms, provided the waveforms used are uncorrelated with respect to each other. The depth map/mapping to be utilized in a host of applications, for example: displaying a 3-D view of the object; virtual reality user-interaction interface with a computerized device; face—or other animal feature or inanimate object—recognition and comparison techniques for security or identification purposes; and 3-D video teleconferencing/telecollaboration.
Owner:UNIV OF KENTUCKY RES FOUND

Currency bill sensor arrangement

A currency processing device for receiving a stack of U.S. currency bills and rapidly processing all the bills in the stack, the device comprising: an input receptacle adapted to receive a stack of U.S. currency bills of a plurality of denominations, the currency bills having a wide dimension and a narrow dimension; a transport mechanism positioned to transport the bills, one at a time, in a transport direction from the input receptacle along a transport path at a rate of at least about 1000 bills per minute with the narrow dimension of the bills parallel to the transport direction; a currency bill sensor arrangement positioned along the transport path, the currency bill sensor comprising: i) a multi-wavelength light source configured to emit a first wavelength of light and a second wavelength of light; ii) a cylindrical lens positioned to receive the first and second wavelengths of light from the multi-wavelength light source, the cylindrical lens illuminating an elongated strip of light on a surface of one of the plurality of currency bills, the cylindrical lens being configured to receive light reflected from the surface of the one of the plurality of currency bills; iii) a photodetector positioned to receive the reflected light, the photodetector generating an electrical signal in response to the received reflected light; iv) a processor configured to receive the electrical signal generated by the photodetector; wherein, the processor is configured to determine whether the surface of the one of the plurality of currency bills is a primary surface or a secondary surface based on the electrical signal.
Owner:CUMMINS-ALLISON CORP

Embedded interferometer for reference-mirror calibration of interferometric microscope

InactiveUS6545761B1Implemented easily and economicallyAccurately determineInterferometersUsing optical meansClosed loopOptoelectronics
A laser interferometer is embedded into an interference microscope to precisely determine the in-focus position of the microscope objective's reference mirror. A collimated laser beam is introduced into the microscope system and split into two beams directed toward a calibration reference surface and the interference objective. The light reflected from the calibration reference surface is returned to the camera. The light into the interference objective is focused onto the reference mirror and returned to the camera. For the purpose of calibration, the two beams are combined at the camera to produce interference fringes. When the reference mirror is in focus, the returned beam is collimated; if the mirror is on either side of focus, the beam is either converging or diverging. Accordingly, the interferogram produced at the camera reflects the in-focus or out-of-focus condition of the reference mirror. The curvature of the wavefront returned from the reference mirror is determined electronically by analyzing the interference fringes produced with the beam returned from the calibration reference surface. By minimizing the curvature of the reference-mirror wavefront as the mirror is translated along the optical path, the reference mirror can be focused with an accuracy greater than possible by visual observation. Furthermore, by automating the focusing system with a precise translation mechanism driven by closed-loop control, operator-to-operator variations are completely eliminated.
Owner:BRUKER NANO INC

System and technique for retrieving depth information about a surface by projecting a composite image of modulated light patterns

InactiveUS20080279446A1Reduce system costInformation can be reducedUsing optical meansAquisition of 3D object measurementsInteraction interfaceTelecollaboration
A technique, associated system and program code, for retrieving depth information about at least one surface of an object. Core features include: projecting a composite image comprising a plurality of modulated structured light patterns, at the object; capturing an image reflected from the surface; and recovering pattern information from the reflected image, for each of the modulated structured light patterns. Pattern information is preferably recovered for each modulated structured light pattern used to create the composite, by performing a demodulation of the reflected image. Reconstruction of the surface can be accomplished by using depth information from the recovered patterns to produce a depth map / mapping thereof. Each signal waveform used for the modulation of a respective structured light pattern, is distinct from each of the other signal waveforms used for the modulation of other structured light patterns of a composite image; these signal waveforms may be selected from suitable types in any combination of distinct signal waveforms, provided the waveforms used are uncorrelated with respect to each other. The depth map / mapping to be utilized in a host of applications, for example: displaying a 3-D view of the object; virtual reality user-interaction interface with a computerized device; face—or other animal feature or inanimate object—recognition and comparison techniques for security or identification purposes; and 3-D video teleconferencing / telecollaboration.
Owner:UNIV OF KENTUCKY RES FOUND

System and method for filling level determination

A method for determining a filling level of a product contained in a tank, by means of a radar level gauge system comprising a transceiver for generating, transmitting and receiving electromagnetic signals; a probe connected to the transceiver and arranged to guide a transmitted electromagnetic signal from the transceiver towards and into the product inside the tank, and to return a reflected electromagnetic signal resulting from reflection of the transmitted electromagnetic signal by a surface of the product back towards the transceiver; and a plurality of reference reflectors each being arranged at a respective known position along the probe and being configured to reflect a portion of the transmitted electromagnetic signal back towards the transceiver. The method comprises the steps of identifying, based on received electromagnetic signals reflected by the reference reflectors, a set of reference reflectors located above the surface of the product; selecting first and second reference reflectors comprised in the set of reference reflectors; determining a propagation velocity compensation factor based on a known distance between the first and second reference reflectors and a distance therebetween determined using received electromagnetic signals reflected by the first and second reference reflector, respectively; and determining the filling level based on a received electromagnetic signal reflected by the surface of the product, and the propagation velocity compensation factor.
Owner:ROSEMOUNT TANK RADAR

Illuminated continuously rotatable dual magnification mirror

A mirror for facilitating appearance related functions includes a circular ring-shaped frame holding therein back-to-back reflective mirror plates having different magnification factors, e.g. 1× and 5×, each plate having a circular central imaging reflective area and an outer concentric light transmissive window area. Continuously rotatable pivot joints support the frame between opposed arms of a yoke protruding upwardly from a stanchion and base for placement on a table, or an arm and wall bracket for mounting on a wall, enabling the frame to be rotated to interchangeably orient 1× and 5× mirror plates in a forward facing use position. A ring-shaped, printed circuit board with circumferentially spaced apart light emitting diodes (LED's) protruding radially outwards of an outer circumferential edge of the board is located between inner facing surfaces of the mirror plates. Illumination of objects in front of the mirror plates is effected by direct LED rays emitted forwardly through the light transmissive windows, and intensified by indirect LED rays reflected from reflective inner facing surfaces of the mirror plates. Electrical power is supplied to the LED's from a battery power supply in the base of the mirror by electrically conductive pins which protrude radially outwards from opposite sides of the frame, the pins being rotatably supported in electrically conductive cups located in opposed arms of the yoke, the cups being connected to the power supply via wires disposed through the yoke arms and stanchion to the power supply.
Owner:ZADRO INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products