Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

204results about How to "Limited bandwidth" patented technology

System and technique for retrieving depth information about a surface by projecting a composite image of modulated light patterns

InactiveUS7440590B1More detailed and large depth mappingLimited bandwidthProjectorsCathode-ray tube indicatorsInteraction interfaceTelecollaboration
A technique, associated system and program code, for retrieving depth information about at least one surface of an object. Core features include: projecting a composite image comprising a plurality of modulated structured light patterns, at the object; capturing an image reflected from the surface; and recovering pattern information from the reflected image, for each of the modulated structured light patterns. Pattern information is preferably recovered for each modulated structured light pattern used to create the composite, by performing a demodulation of the reflected image. Reconstruction of the surface can be accomplished by using depth information from the recovered patterns to produce a depth map/mapping thereof. Each signal waveform used for the modulation of a respective structured light pattern, is distinct from each of the other signal waveforms used for the modulation of other structured light patterns of a composite image; these signal waveforms may be selected from suitable types in any combination of distinct signal waveforms, provided the waveforms used are uncorrelated with respect to each other. The depth map/mapping to be utilized in a host of applications, for example: displaying a 3-D view of the object; virtual reality user-interaction interface with a computerized device; face—or other animal feature or inanimate object—recognition and comparison techniques for security or identification purposes; and 3-D video teleconferencing/telecollaboration.
Owner:UNIV OF KENTUCKY RES FOUND

Position location method and apparatus for a mobile telecommunications system

In a cellular mobile telecommunications system the position of a mobile station can be estimated in terms of its bearing and range from a cell site. A multi-element direction finding antenna at the cell site receives signals from the mobile station and a receiver circuit estimates the bearing using the relative phase of signals received at different antenna elements and estimates the range by measuring round trip delay of signals to and from the mobile station. Motion of the mobile station can introduce errors into the bearing estimate due to frequency offset and frequency spread when element sampling is non-simultaneous. Compensation for these errors is introduced by using signal samples successively received at the same antenna element to estimate Doppler frequency offset and spread. It is necessary to ensure accurate calibration of the direction finding antenna and the receiver circuit. This is done by injecting calibration signals into the circuit near the antenna or into the antenna itself from a near field probe. Other aspects of calibration, such as antenna position, are calibrated using a remote beacon. A beacon emulating a mobile station but at a fixed, known location, or a beacon at an adjacent cell site may be used.
Owner:APPLE INC

Circuit switched millimeter wave communication network

A high bandwidth, low latency middle-mile core communications network providing low-cost and high-speed communications among the users of the network. Embodiments of the invention include a number of network access points located at a number of spaced apart sites. At least some of these network access points in the network are in communication with each other via millimeter radio links with microwave backup links. In preferred embodiments the millimeter radio links include two millimeter radios, one transmitting in the frequency range of 71-76 GHz and receiving in the frequency range if 81 to 86 GHz and the other radio transmitting in the frequency range of 81-86 GHz and receiving in the frequency range if 71 to 76 GHz. In these preferred embodiments each millimeter wave radio is equipped with an antenna designed to produce a millimeter wave beam with an angular spread of less than two degrees. A high-speed switch is located at each network access point. The switches include a plurality of ports through which a plurality of network users transmits information through the network. Preferred embodiments utilize Ethernet switches programmed to encapsulate and tag incoming packets with a special set of tags which allow the tagging switch and other Ethernet switches in the network to direct the packets to one or more output ports of itself and/or one or more of the output ports of other Ethernet switches at one or more distant network access points, without a need for any of the network equipment to read any MAC or IP address information contained in the packets.
Owner:TREX ENTERPRISES CORP

Device and method for radio transmitters

The present invention relates to a device and a method in a transmitter stage in a radio transmitter for modulating and amplifying an information signal for further transmission through a radio channel. The transmitter stage in the radio transmitter comprises a converting device (5) PCH, an amplifier control device (8) PAC, a power detector (13) and a power amplifier (2). Examples of the problems solved by the present invention are difficulties in reducing the power consumption, non-linearities in the output signal when using non-linear amplifiers in radio transmitters, and achieving a high signal-to-noise ratio in the output signal without connecting filter arrangements after such an amplifier. The solution according to the inventive method and device utilizes an information signal which has in earlier steps been divided in its polar components: a phase reference component signal (Ephr) and an amplitude component signal (Aamp). The phase reference component phase modulates a low noise high power signal source which has a constant amplitude. The amplitude of the obtained signal is then formed in an amplifier, which is controllable with the amplitude component signal (Aamp). Its current consumption is registered and compared to a control value for the current. The amplifier is controlled towards this control value.
Owner:OPTIS WIRELESS TECH LLC

Position location method and apparatus for a mobile telecommunications system

In a cellular mobile telecommunications system the position of a mobile station can be estimated in terms of its bearing and range from a cell site. A multi-element direction finding antenna at the cell site receives signals from the mobile station and a receiver circuit estimates the bearing using the relative phase of signals received at different antenna elements and estimates the range by measuring round trip delay of signals to and from the mobile station. Motion of the mobile station can introduce errors into the bearing estimate due to frequency offset and frequency spread when element sampling is non-simultaneous. Compensation for these errors is introduced by using signal samples successively received at the same antenna element to estimate Doppler frequency offset and spread. It is necessary to ensure accurate calibration of the direction finding antenna and the receiver circuit. This is done by injecting calibration signals into the circuit near the antenna or into the antenna itself from a near field probe. Other aspects of calibration, such as antenna position, are calibrated using a remote beacon. A beacon emulating a mobile station but at a fixed, known location, or a beacon at an adjacent cell site may be used.
Owner:APPLE INC

Portable Wireless Monitoring and Control Station for Use in Connection With a Multi-media Surveillance System Having Enhanced Notification Functions

An enhanced, digitized security system provides wireless, portable monitoring and control capability for a system having a plurality of cameras in a network and connected to a suitable hub. The portable module is also in wireless communication with a server. The permits remote installation and aiming of the cameras, remote viewing, remote database access and remote capture of information for transmission to the database server such as images, video, and other security data for archiving and management. A transmitter is associated with the hub for transmitting the signals via a wireless network to a portable, handheld receiving station, wherein any of the cameras on the network may be accessed and displayed on the portable station display screen. The portable station also includes a transmitter for transmitting control information back to the hub for controlling each of the cameras, permitting full control of the cameras for adjusting contrast, hue, brightness, pan, tilt and zoom, and focus. The multi-camera system is also connected to a server via the hub and the portable station can communicate with the server via the wireless hub to access stored data for retrieval and replay. The system also supports ancillary features such as remote access to student or employee records anywhere the portable unit is used, ID verification by use of a magnetic reader or bar code reader provided on the portable unit and other identification systems such as, by way of example, biometric sampling. Access control devices may be controlled at the portable module, permitting controlled access to various facilities as the user moves about with the portable station. Full communication capability is provided, with communication links to e-mail, telephone and other communication networks and systems. The system is enhanced to selectively notify designated personnel either at the fixed stations or at the portable, wireless stations, upon detection of a motion event, or any other event detectable by the system.
Owner:PR NEWSWIRE
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products