Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

11946 results about "Signal source" patented technology

Method and apparatus for demodulating signals in a pulse oximetry system

A method and an apparatus measure blood oxygenation in a subject. A first signal source applies a first input signal during a first time interval. A second signal source applies a second input signal during a second time interval. A detector detects a first parametric signal responsive to the first input signal passing through a portion of the subject having blood therein. The detector also detects a second parametric signal responsive to the second input signal passing through the portion of the subject. The detector generates a detector output signal responsive to the first and second parametric signals. A signal processor receives the detector output signal and demodulates the detector output signal by applying a first demodulation signal to a signal responsive to the detector output signal to generate a first output signal responsive to the first parametric signal. The signal processor applies a second demodulation signal to the signal responsive to the detector output signal to generate a second output signal responsive to the second parametric signal. The first demodulation signal and the second demodulation signal both include at least a first component having a first frequency and a first amplitude and a second component having a second frequency and a second amplitude. The second frequency is a harmonic of the first frequency. The second amplitude is related to the first amplitude to minimize crosstalk from the first parametric signal to the second output signal and to minimize crosstalk from the second parametric signal to the first output signal.

System using leo satellites for centimeter-level navigation

Disclosed herein is a system for rapidly resolving position with centimeter-level accuracy for a mobile or stationary receiver [4]. This is achieved by estimating a set of parameters that are related to the integer cycle ambiguities which arise in tracking the carrier phase of satellite downlinks [5,6]. In the preferred embodiment, the technique involves a navigation receiver [4] simultaneously tracking transmissions [6] from Low Earth Orbit Satellites (LEOS) [2] together with transmissions [5] from GPS navigation satellites [1]. The rapid change in the line-of-sight vectors from the receiver [4] to the LEO signal sources [2], due to the orbital motion of the LEOS, enables the resolution with integrity of the integer cycle ambiguities of the GPS signals [5] as well as parameters related to the integer cycle ambiguity on the LEOS signals [6]. These parameters, once identified, enable real-time centimeter-level positioning of the receiver [4]. In order to achieve high-precision position estimates without the use of specialized electronics such as atomic clocks, the technique accounts for instabilities in the crystal oscillators driving the satellite transmitters, as well as those in the reference [3] and user [4] receivers. In addition, the algorithm accommodates as well as to LEOS that receive signals from ground-based transmitters, then re-transmit frequency-converted signals to the ground.

Tracking algorithm

A method of tracking an entity by monitoring a signal, the signal tending to vary spatially and be generally time-invariant, the entity moving from a first location within an area to a second location within the area, the method being suitable for use when the location of the source of the signal is unknown, the method comprising providing a plurality of particles for use with a particle filter, each particle being associated with a first particle location, a first particle location being an estimate of the first location of the entity, providing an estimate of the motion of the entity between the first location and the second location, using the estimate of the motion and using the particle filter, for each particle, updating the first particle location for that particle thereby producing an updated particle location, the updated particle location being an estimate of the second location of the entity, for each updated particle, estimating at least one expected signal parameter at the updated particle location, measuring a signal parameter at the second location of the entity, assigning a weight to each updated particle depending on the expected signal parameter estimated for that particle and the measured signal parameter, estimating the second location of the entity by determining a function of the weighted updated particles, and inputting the estimated location and measured signal parameter, as a location / parameter data set, to a database.

Multiple RF return pad contact detection system

A multiple RF return pad contact detection system is provided which is adaptive to different physiological characteristics of patients without being susceptible to electrosurgical current interference (e.g., interference or measurement interaction between components of the detection system). The detection system can measure or sense the contact resistance or impedance between the patient and pairs of RF return pads or return electrodes where multiple pairs of RF return pads are utilized due to the high current frequently needed during electrosurgery while eliminating or minimizing the risk of measurement interaction between the RF return pad pairs. The system allows for the independent and simultaneous measurement of the pad contact impedance for each pair of RF return pads. If the impedance of any pad pair is above a predetermined limit, the system turns off or reduces the electrosurgical output of the electrosurgical generator to prevent excess heating. The system eliminates or minimizes interference or measurement interaction between the pad pairs by providing a different signal source frequency for each pad contact pair, but a frequency which matches an associated series resonant network frequency. The current that flows in the series resonant network is a direct reflection or function of the pad impedance of the corresponding pad pair.

Method and Apparatus for Delivering Consumer Entertainment Services Accessed Over an Ip Network

The present invention provides IP-centric, multi-channel, time-shifted and real-time telecommunications services to a plurality of system users. The system can capture both digital and analog multi-channel feeds and, through a cross-connect layer, can convert the signals to a digital format and subsequently send them to an encoder to be compressed. The encoding process can use a firmware upgradeable software developed to decrease data bitrates while retaining quality of the information at a desired level. The encoded, compressed signals may either be stored on a data-on-demand server for later viewing services, such as television / video-on-demand or audio-on-demand, or may be streamed directly to system users using a Media Streaming Subsystem (MSS). The MSS can be responsive to a system user request and operative to forward a selected stream of compressed digital data to the system user via a gateway means. The system can include a System Controller that can provide management and control of the system components and services provided by the system. The gateway means is able to receive compressed digital data from the Media Streaming Subsystem and transmit that data to a system user sending a request over a communication network. A cable modem, DSL modem or other appropriate interface can be located at each system user's location, thereby providing a means for sending multiple signal sources to a system user's Local Area Network (LAN) to which the User Computing Device(s) (UCD) of a system user are connected. The UCD receives the compressed data from the gateway means, subsequently decodes this compressed data and presents this decompressed information to the system user via a presentation system which may or may not be integrated into the UCD, thereby providing the requested entertainment services to the system user.

Piezoelectric resonator, process for the fabrication thereof including its use as a sensor element for the determination of the concentration of a substance contained in a liquid and/or for the determination of the physical properties of the liquid

Disclosed is a piezoelectric resonator, a process for the fabrication thereof and its use as a sensor element, which implemented in a through-flow cell, is integratable in a measurement system for the determination of the concentration of a substance contained in a liquid and/or for the determination of the physical properties of the liquid. The piezoelectric resonator is designed plane and is provided on its surface with electric contact areas for an electrode and a counter electrode, which is connectable to a signal source as well as to a measurement device. For measuring, the piezoelectric resonator is brought into contact with the to-be-examined liquid on one side, with the resonator responding to the accumulation of the mass of the to-be-detected substance or to a change in the physical properties of the liquid by changing its resonance frequency and/or oscillation amplitude.The present invention is distinguished by the fact that the piezoelectric resonator is provided with contact electrode areas which is contactable from one single side of the resonator. The resonator is the heart piece of a sensor element, which is integrated in a through-flow cell. The through-flow cell us insertable module-like in a measurement arrangement for determining the concentration of a substance contained in a liquid and/or determining the physical properties of the liquid.
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products