Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2117 results about "Signal parameter" patented technology

Scalable and embedded codec for speech and audio signals

InactiveUS7272556B1Improve signal reconstruction accuracyImprove reconstruction accuracySpeech analysisMultiple modesAudio signal flow
A system and method for processing of audio and speech signals is disclosed, which provide compatibility over a range of communication devices operating at different sampling frequencies and/or bit rates. The analyzer of the system divides the input signal in different portions, at least one of which carries information sufficient to provide intelligible reconstruction of the input signal. The analyzer also encodes separate information about other portions of the signal in an embedded manner, so that a smooth transition can be achieved from low bit-rate to high bit-rate applications. Accordingly, communication devices operating at different sampling rates and/or bit-rates can extract corresponding information from the output bit stream of the analyzer. In the present invention embedded information generally relates to separate parameters of the input signal, or to additional resolution in the transmission of original signal parameters. Non-linear techniques for enhancing the overall performance of the system are also disclosed. Also disclosed is a novel method of improving the quantization of signal parameters. In a specific embodiment the input signal is processed in two or more modes dependent on the state of the signal in a frame. When the signal is determined to be in a transition state, the encoder provides phase information about N sinusoids, which the decoder end uses to improve the quality of the output signal at low bit rates.
Owner:ALCATEL LUCENT SAS

Tracking algorithm

A method of tracking an entity by monitoring a signal, the signal tending to vary spatially and be generally time-invariant, the entity moving from a first location within an area to a second location within the area, the method being suitable for use when the location of the source of the signal is unknown, the method comprising providing a plurality of particles for use with a particle filter, each particle being associated with a first particle location, a first particle location being an estimate of the first location of the entity, providing an estimate of the motion of the entity between the first location and the second location, using the estimate of the motion and using the particle filter, for each particle, updating the first particle location for that particle thereby producing an updated particle location, the updated particle location being an estimate of the second location of the entity, for each updated particle, estimating at least one expected signal parameter at the updated particle location, measuring a signal parameter at the second location of the entity, assigning a weight to each updated particle depending on the expected signal parameter estimated for that particle and the measured signal parameter, estimating the second location of the entity by determining a function of the weighted updated particles, and inputting the estimated location and measured signal parameter, as a location / parameter data set, to a database.
Owner:BAE SYSTEMS PLC

Adaptive compression and decompression of bandlimited signals

An efficient method for compressing sampled analog signals in real time, without loss, or at a user-specified rate or distortion level, is described. The present invention is particularly effective for compressing and decompressing high-speed, bandlimited analog signals that are not appropriately or effectively compressed by prior art speech, audio, image, and video compression algorithms due to various limitations of such prior art compression solutions. The present invention's preprocessor apparatus measures one or more signal parameters and, under program control, appropriately modifies the preprocessor input signal to create one or more preprocessor output signals that are more effectively compressed by a follow-on compressor. In many instances, the follow-on compressor operates most effectively when its input signal is at baseband. The compressor creates a stream of compressed data tokens and compression control parameters that represent the original sampled input signal using fewer bits. The decompression subsystem uses a decompressor to decompress the stream of compressed data tokens and compression control parameters. After decompression, the decompressor output signal is processed by a post-processor, which reverses the operations of the preprocessor during compression, generating a postprocessed signal that exactly matches (during lossless compression) or approximates (during lossy compression) the original sampled input signal. Parallel processing implementations of both the compression and decompression subsystems are described that can operate at higher sampling rates when compared to the sampling rates of a single compression or decompression subsystem. In addition to providing the benefits of real-time compression and decompression to a new, general class of sampled data users who previously could not obtain benefits from compression, the present invention also enhances the performance of test and measurement equipment (oscilloscopes, signal generators, spectrum analyzers, logic analyzers, etc.), busses and networks carrying sampled data, and data converters (A/D and D/A converters).
Owner:TAHOE RES LTD

Scalable and embedded codec for speech and audio signals

A system and method for processing of audio and speech signals is disclosed, which provide compatibility over a range of communication devices operating at different sampling frequencies and / or bit rates. The analyzer of the system divides the input signal in different portions, at least one of which carries information sufficient to provide intelligible reconstruction of the input signal. The analyzer also encodes separate information about other portions of the signal in an embedded manner, so that a smooth transition can be achieved from low bit-rate to high bit-rate applications. Accordingly, communication devices operating at different sampling rates and / or bit-rates can extract corresponding information from the output bit stream of the analyzer. In the present invention embedded information generally relates to separate parameters of the input signal, or to additional resolution in the transmission of original signal parameters. Non-linear techniques for enhancing the overall performance of the system are also disclosed. Also disclosed is a novel method of improving the quantization of signal parameters. In a specific embodiment the input signal is processed in two or more modes dependent on the state of the signal in a frame. When the signal is determined to be in a transition state, the encoder provides phase information about N sinusoids, which the decoder end uses to improve the quality of the output signal at low bit rates.
Owner:ALCATEL LUCENT SAS

Monitoring system and method implementing failure time spectrum scan

A channel plan with a corresponding test plan are implemented in connection with a plurality of nodes that communicate signals. The channel plan has one or more predefined specifications for each of one or more signal channels on each of the nodes. The channel plan enables a monitoring system to, among other things, conduct automatic periodic test plans, comprising tests, on the nodes, based upon the predefined data specified in the channel plan. Each test plan prescribes measurement of at least one signal parameter, pertaining to one or more nodes as a whole and / or to one or more channels contained within the nodes. The monitoring system includes a spectrum analyzer, a switch enabling the spectrum analyzer to interface with the nodes, and a controller controlling the switch and the spectrum analyzer. The controller is configured to enable creation of and display the channel plan and test plan, based upon user inputs. Notably, the controller can be configured to compare results from tests with alarm limits, specified in the test plan, to control the spectrum analyzer to perform a failure time spectrum scan when one or more test results exceed one or more alarm limits, and to generate a plot of power amplitude versus frequency over the frequency spectrum of the node at issue.
Owner:VIAVI SOLUTIONS INC

Robust, efficient, localization system

Replica correlation processing, and associated representative signal-data reduction and reconstruction techniques, are used to detect signals of interest and obtain robust measures of received-signal parameters, such as time differences of signal arrival and directional angles of arrival, that can be used to estimate the location of a cellularized-communications signal source. The new use in the present invention of signal-correlation processing for locating communications transmitters. This enables accurate and efficient extraction of parameters for a particular signal even in a frequency band that contains multiple received transmissions, such as occurs with code-division-multiple-access (CDMA) communications. Correlation processing as disclosed herein further enables extended processing integration times to facilitate the effective detection of desired communications-signal effects and replication measurement of their location-related parameters, even for the communications signals modulated to convey voice conversations or those weakened through propagation effects. Using prior, constructed, signal replicas in the correlation processing enables elimination of the inter-site communications of the signal representations that support the correlation analyses. Reduced-data representations of the modulated signals for voiced conversation, or for the variable components of data communications, are used to significantly reduce the inter-site communications that support the correlation analyses.
Owner:TRUE POSITION INC

Robust, Efficient, Localization System

Replica correlation processing, and associated representative signal-data reduction and reconstruction techniques, are used to detect signals of interest and obtain robust measures of received-signal parameters, such as time differences of signal arrival and directional angles of arrival, that can be used to estimate the location of a cellularized-communications signal source. The new use in the present invention of signal-correlation processing for locating communications transmitters. This enables accurate and efficient extraction of parameters for a particular signal even in a frequency band that contains multiple received transmissions, such as occurs with code-division-multiple-access (CDMA) communications. Correlation processing as disclosed herein further enables extended processing integration times to facilitate the effective detection of desired communications-signal effects and replication measurement of their location-related parameters, even for the communications signals modulated to convey voice conversations or those weakened through propagation effects. Using prior, constructed, signal replicas in the correlation processing enables elimination of the inter-site communications of the signal representations that support the correlation analyses. Reduced-data representations of the modulated signals for voiced conversation, or for the variable components of data communications, are used to significantly reduce the inter-site communications that support the correlation analyses.
Owner:TRUE POSITION INC

Methods, devices and systems for programming neurostimulation

Methods, devices and systems are provided to efficiently identify, from among a plurality of possible neurostimulation parameter sets, one or more preferred neurostimulation parameter sets that treat a targeted pain of a patient. Each neurostimulation parameter set defines electrode parameters and neurostimulation signal parameters. A plurality of different neurostimulation parameter sets are tested on the patient to thereby identify those tested neurostimulation parameter sets that treat the targeted pain. Each of the tested neurostimulation parameter sets defines an electrode configuration that differs from the other tested neurostimulation parameter sets. All of the tested neurostimulation parameter sets comprise a same value for a specific neurostimulation signal parameter (e.g., pulse width) that if reduced reduces power consumption. If more than one of the tested neurostimulation parameter sets are identified as treating the targeted pain, then neurostimulation parameter sets identified as treating the targeted pain are retested, with the value for the specific neurostimulation signal parameter reduced by a same amount for each of the retested neurostimulation parameter sets, to thereby identify those neurostimulation parameter sets that treat the targeted pain at the reduced power consumption level.
Owner:ST JUDE MEDICAL LUXEMBOURG HLDG SMI S A R L SJM LUX SMI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products