Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

4004results about "Spectral/fourier analysis" patented technology

Communication device for household electric appliances and monitoring system using said device

A communication device, for connecting one or more electrical appliances to a remote service centre, comprises a control unit (AMC), means (PLG) for connecting the device (HG) to an alternating voltage electric mains network (Vac) and means (SK) for supplying the alternating mains voltage (Vac) to a power supply line of an electric appliance. The device (HG) further comprises first communication means (CSA), prearranged for receiving information possibly generated by the electric appliance and transmitted through the power supply line thereof, second communication means (ZB), prearranged for establishing a connection with a local area network (HN1) and third communication means (GGM), prearranged for establishing a connection with a further communication network, different from the local network (HN1), to which the remote service centre is connected. The control unit (AMC) is prearranged for acquiring by means of the first communication means (CSA), first information possibly generated by the electric appliance and transmitted through the power supply line thereof and/or second information regarding electric energy consumptions associated to the operation of is the electric appliance, acquiring, by means of the second communication means (ZB), third information possibly available on the local network (HN1), and transmitting to the remote centre (RMC), by means of the third communication means (GGM), at least one of the first, second and third information.
Owner:WHIRLPOOL EMEA SPA

Monitoring system and method implementing failure time spectrum scan

A channel plan with a corresponding test plan are implemented in connection with a plurality of nodes that communicate signals. The channel plan has one or more predefined specifications for each of one or more signal channels on each of the nodes. The channel plan enables a monitoring system to, among other things, conduct automatic periodic test plans, comprising tests, on the nodes, based upon the predefined data specified in the channel plan. Each test plan prescribes measurement of at least one signal parameter, pertaining to one or more nodes as a whole and / or to one or more channels contained within the nodes. The monitoring system includes a spectrum analyzer, a switch enabling the spectrum analyzer to interface with the nodes, and a controller controlling the switch and the spectrum analyzer. The controller is configured to enable creation of and display the channel plan and test plan, based upon user inputs. Notably, the controller can be configured to compare results from tests with alarm limits, specified in the test plan, to control the spectrum analyzer to perform a failure time spectrum scan when one or more test results exceed one or more alarm limits, and to generate a plot of power amplitude versus frequency over the frequency spectrum of the node at issue.
Owner:VIAVI SOLUTIONS INC

Unmanned aerial vehicle integrated defense system and method

ActiveCN105842683AImprove stabilityIncrease electronic reconnaissance functionSpectral/fourier analysisRadio wave finder detailsRadarUncrewed vehicle
The invention discloses an unmanned aerial vehicle integrated defense system and a method. The unmanned aerial vehicle integrated defense system comprises a reconnaissance equipment unit, an interference equipment unit and a control unit, and is characterized in that the reconnaissance equipment unit integrates a radar reconnaissance technology, a photoelectric reconnaissance technology and a radio reconnaissance technology to carry out monitoring on a designated area so as to recognize an unmanned aerial vehicle and acquire movement and position information and instruction and image transmission information of the unmanned aerial vehicle and azimuth information of a manipulator of the unmanned aerial vehicle; and the control unit realizes interference for instruction signals, navigation signals and image transmission signals of the unmanned aerial vehicle through the interference equipment unit according to the acquired information. The unmanned aerial vehicle integrated defense system increases electronic reconnaissance on the basis of integrating the radar, photoelectric/infrared reconnaissance and electronic interference technologies so as to carry out reconnaissance analysis on wireless signals of the unmanned aerial vehicle, is applied to guidance interference, and improves the interference effectiveness and the efficiency; and meanwhile, the unmanned aerial vehicle integrated defense system can carry out remote positioning on the manipulator of the unmanned aerial vehicle, provides capture guidance for a law-enforcing department while realizing unmanned aerial vehicle defense, and improves the crime committing cost of unmanned aerial vehicle crime committing.
Owner:胡贝贝

Augmented classical least squares multivariate spectral analysis

InactiveUS20050043902A1Accurate and precise predictionSpectral/fourier analysisRaman scatteringAlternating least squaresModel method
A method of multivariate spectral analysis, termed augmented classical least squares (ACLS), provides an improved CLS calibration model when unmodeled sources of spectral variation are contained in a calibration sample set. The ACLS methods use information derived from component or spectral residuals during the CLS calibration to provide an improved calibration-augmented CLS model. The ACLS methods are based on CLS so that they retain the qualitative benefits of CLS, yet they have the flexibility of PLS and other hybrid techniques in that they can define a prediction model even with unmodeled sources of spectral variation that are not explicitly included in the calibration model. The unmodeled sources of spectral variation may be unknown constituents, constituents with unknown concentrations, nonlinear responses, non-uniform and correlated errors, or other sources of spectral variation that are present in the calibration sample spectra. Also, since the various ACLS methods are based on CLS, they can incorporate the new prediction-augmented CLS (PACLS) method of updating the prediction model for new sources of spectral variation contained in the prediction sample set without having to return to the calibration process. The ACLS methods can also be applied to alternating least squares models. The ACLS methods can be applied to all types of multivariate data.
Owner:NAT TECH & ENG SOLUTIONS OF SANDIA LLC

System and method for enabling an operator to analyze a database of acquired signal pulse characteristics

A pulse management system configured to perform a plurality of pulse measurements on each of a plurality of pulses of an acquired signal and to store results of the pulse measurements in an accessible data structure. The pulse management system includes a pulse analyzer that searches the data structure for pulses of the acquired signal that satisfy operator-provided search criteria. Similarly, the pulse analyzer can sort the selected subset of pulses based on sort criteria provided, for example, by an operator. The pulse analyzer can provide the operator with a user interface environment in which the operator specifies the search and sort criteria and in which the pulse analyzer displays the selected pulses with their associated pulse measurement results. The operator can advance through the selected pulses in any manner desired to display different pulses together or separately. The pulse analyzer thereby provides an operator with the capability to gain insights into a large number of acquired pulses through the selection of individual pulses meeting desired characteristics or relative time of occurrence, through the filtering or selection of pulses meeting specified criteria, and through the arrangement of those pulses according to the same or different criteria.
Owner:AGILENT TECH INC

Passive intermodulation (PIM) distance to fault analyzer with selectable harmonic level

A distance to PIM measurement circuit is made using a device such as an AWS transceiver that has separate transmit and receive bands. With a typical AWS transceiver placed in close proximity to a PCS transceiver, the AWS device will include a band reject filter to eliminate interference from the PCS signals. The PIM measurement circuit includes two frequency sources F1 and F2 that are provided through a combiner for characterization of the PIM circuit. To enable distance determination, an FM measurement is created by using a offset sweep generator attached to one of the two frequency sources. To avoid frequencies blocked by the band reject filter, a desired harmonic of a test PIM harmonic signal is selected outside the band of the band reject filter. In one embodiment, a reference signal is provided by mixing a signal from an ×M multiplier connected to the F1 source with an ×N multiplier signal connected to the F2 source, the mixed output being filtered to select the desired harmonic reference signal to avoid the band reject filter. In another embodiment, a reference signal is created by generating all harmonics of the combined F1 and F2 signal using a series connected amplifier and clipping diodes with a filter again used to select the desired harmonic reference signal to avoid the band reject filter.
Owner:ANRITSU CO

Apparatus and methods for performing acoustical measurements

Apparatus (15, 30) and methods for performing acoustical measurements are provided having some and preferably all of the following features: (A) the system (15, 30) is operated under near-field conditions; (B) the piezoelement (40) or piezoelements (40, 48) used in the system are (i) mechanically (41, 49) and electrically (13, 16) damped and (ii) efficiently electrically coupled to the signal processing components of the system; (C) each piezoelement (40, 48) used in the system includes an acoustical transformer (42, 50) for coupling the element to a gaseous test medium (9); (D) speed of sound is determined from the time difference between two detections of an acoustical pulse (81, 82) at a receiver (40, FIG. 3; 48, FIG. 7); (E) cross-correlation techniques are employed to detect the acoustical pulse at the receiver; (F) forward and inverse Fourier transforms employing fast Fourier transform techniques are used to implement the cross-correlation techniques; in such a mathematical manner that the peak of the cross-correlation function corresponds to the detection of a pulse at the receiver and (G) stray path signals through the body (31) of the acoustic sensor (15, 30) are removed from detected signals prior to signal analysis. Techniques are also provided for performing acoustical measurements on gases whose thermodynamic properties have not been measured and on mixtures of compressible gases. Methods and apparatus (29) for performing feedback control of a gas of interest in a mixture of that gas and a carrier gas are provided in which the controlled variable is the flow of the carrier gas.
Owner:VEECO INSTR

Serial arc-fault circuit interrupter and serial arc-fault protection method thereof

The invention discloses a serial arc-fault circuit interrupter, comprising a power circuit, a current sensor, a current sensing circuit, an amplifying and filtering circuit, a voltage zero-crossing comparison circuit, a microcontroller, a trip trigger circuit. A current transformer collects current signals in a circuit; the current signals are converted into voltage signals through the current sensing circuit, and are input into the microcontroller through the amplifying and filtering circuit; the voltage zero-crossing comparison circuit inputs a voltage zero-crossing pulse signal into the microcontroller; the microcontroller judges arc emergence through arc characteristics analysis and is disconnected with a load circuit by the trip trigger circuit. The protection method transforms a one-dimensional time signal into a two-dimensional time signal by utilizing short-time Fourier transform, analyzes changes of fundamental component, even-order harmonic and odd harmonic component of eachcyclic wave, extracts and judges the serial arc-fault characteristics. The method has the advantages that multiple characteristics are extracted to realize comprehensive judgment of fault arc, missedtrip and balk generated in serial arc detection in small load are prevented, and the reliability of judgment is improved effectively.
Owner:天津托普帕尔电气自动化设备有限公司

High-efficiency measurement method for sinusoidal signal frequency in undersampling and implementation device

The invention belongs to the technical field of digital signal processing, and provides a high-efficiency measurement method of a sinusoidal signal frequency in undersampling and an implementation device which can estimate parameters such as frequency and the like under the condition of undersampling and can finish precise frequency measurement. The invention adopts the technical scheme that traditional FFT spectrum analysis and all phase FFT spectrum analysis are adopted to obtain a peak value spectrum G (q) and a peak value spectrum Ga (q); a phase value is directly read from the peak valuespectrum to take the square of a G (q) modulus to obtain a power spectrum value Pg (q); after performing modulus division on Pg (q) and Ga (q), amplitude estimation is obtained to take the differenceof the phase value of G (q) and the phase value of g(q), and the difference divided by tau=(N-1) / 2 to obtain frequency offset estimation delta k; and finally delta k delta omega and q delta omega aresuperposed to obtain digital angular frequency estimation which directly serves as the phase estimation and the amplitude estimation of the measured signal. The invention is mainly used for undersampling measurement in digital signal processing.
Owner:LIANYUNGANG RES INST NANJING UNIV OF SCI & TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products