Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1840 results about "Radio transmission" patented technology

Portable remote patient telemonitoring system

A system and method for monitoring vital signs and capturing data from a patient remotely using radiotelemetry techniques. The system is characterized by a cordless, disposable sensor band with sensors form measuring full waveform ECG, full waveform respiration, skin temperature, and motion, and transmission circuitry for the detection and transmission of vital signs data of the patient. A small signal transfer unit that can either be worn by the patient, e.g., on his or her belt, or positioned nearby receives data from the sensor band, which it then forwards by e.g., radio transmission to a base station that can be located up to 60 meters away. The base station receives data transmissions from the signal transfer unit and is designed to connect to conventional phone lines for transferring the collected data to a remote monitoring station. The base station may also capture additional clinical data, such as blood pressure data, and to perform data checks. Patient safety is enhanced by the ability of the base station to compare clinical data, e.g., ECG, against given profiles and to mark events when appropriate or when the base station is programmed to do so. Such events are indicated to the physician and could be indicated to the patient by reverse transmission to the signal transfer unit. A remote monitoring station allows the presentation and review of data (including events) forwarded by the sensor band. ECG analysis software and a user-friendly graphical user interface are provided to remotely analyze the transmitted data and to permit system maintenance and upkeep. The system of the invention has useful application to the collection of patient clinical data during drug trials and medical testing for regulatory approvals as well as management of patients with chronic diseases.
Owner:CLEARPATH PARTNERS

Method and system of using a RFID reader network to provide a large operating area

The present invention relates to a method and apparatus for using a RFID reader network to provide a large operating area, thereby enabling multiple RFID readers to simultaneously operate with minimal interference among all the RFID readers in the same network. The RFID network comprises a plurality of RFID readers connected to a server via a network backbone. Each operating RFID reader is associated with a group of neighboring RFID readers. A neighboring RFID reader is defined as a RFID reader that can detect tag responses for the communication between the operating RFID reader and its RFID tags. Each operating RFID reader sends its neighboring RFID readers at least one Tag Operation (TO) packet before starting to communicate with RFID tags and at least one End of Tag Operation (ETO) packet after the tag operation is completed. To avoid interference, each RFID reader uses a listen-before-talk scheme in which it checks if any TO packet has been sent by neighboring RFID readers before starting radio transmission. If both RFID readers are allowed to transmit, the RFID reader with a neighboring RFID reader just finishing transmission has the higher priority. This approach improves the throughput by taking advantage of the overlapped areas of neighboring RFID readers.
Owner:ZAI LI CHENG RICHARD +1

Flexible visually directed medical intubation instrument and method

A flexible medical intubation instrument provided for placement into an animal or human patient comprises a catheter with at least a pair of longitudinally extending lumens or channels including a sensor and/or actuator channel and a working channel. In the sensor/actuator channel is provided a fixed or slideably removable sensor cable having a sensor for sensing a characteristic or condition including any of the following: a visual sensor for optical viewing, a chemical sensor, a pH sensor, a pressure sensor, an infection sensor, an audio sensor, or a temperature sensor. The sensors are coupled by the sensor/actuator cable through light transmission, electric current, or radio transmission to a viewing instrument or other output device such as a meter or video screen for displaying the condition that is sensed within the body of the patient while the flexibility of the composite structure comprising the catheter and cable enable the entire instrument to flex laterally as it moves through curved passages or around obstructions during insertion or removal. While making observations through the sensor channel, the working channel simultaneously functions as a drain or an irrigation duct, a feeding tube, or to provide a passage for the insertion of one or a succession of surgical devices such that the catheter serves as a protective artificial tract or liner as surgical devices are inserted and removed through it in succession so as to minimize tissue trauma, infection, and pain experienced by the patient. The instrument can be used in urology, as well as a visually directed nasogastric tube, as a visually directed external gastrostomy tube, or as a visually directed internal gastric tube or percutaneous endoscopic gastrostomy tube and in other applications.
Owner:PERCUVISION

Ultrawide-band communication system and method

An impulse radio communications system using one or more subcarriers to communicate information from an impulse radio transmitter to an impulse radio receiver. The impulse radio communication system is an ultrawide-band time domain system. The use of subcarriers provides impulse radio transmissions added channelization, smoothing and fidelity. Subcarriers of different frequencies or waveforms can be used to add channelization of impulse radio signals. Thus, an impulse radio link can communicate many independent channels simultaneously by employing different subcarriers for each channel. The impulse radio uses modulated subcarrier(s) for time positioning a periodic timing signal or a coded timing signal. Alternatively, the coded timing signal can be summed or mixed with the modulated subcarrier(s) and the resultant signal is used to time modulate the periodic timing signal. Direct digital modulation of data is another form of subcarrier modulation for impulse radio signals. Direct digital modulation can be used alone to time modulate the periodic timing signal or the direct digitally modulated the periodic timing signal can be further modulated with one or more modulated subcarrier signals. Linearization of a time modulator permits the impulse radio transmitter and receiver to generate time delays having the necessary accuracy for impulse radio communications.
Owner:TDC ACQUISITION HLDG

Radio frequency control for communication systems

The present invention provides for a system and method for improvement of radio transmitter and receiver frequency accuracy for a local radio communication unit that communicates digital data with a remote communication unit. In the local unit the received radio signal is down-converted, and converted to complex baseband digital samples by an analog-to-digital converter. A downlink digital phase rotator applies a fine frequency shift to the samples in accordance with a receiver frequency offset command. The resultant baseband signal is used by the data demodulator and by a receiver frequency error estimator to obtain receiver frequency errors. A data modulator generates baseband complex samples which are shifted in carrier frequency by an integrated uplink digital phase rotator in accordance with a transmitter frequency offset command. The modulated samples are then converted by a digital-to-analog converter and upconverted in frequency for radio transmission to the remote unit. The local oscillator signals for both upconverter and downconverter are phase locked to a reference frequency generated by a VCXO. An automatic frequency control (AFC) function nulls the transmitter and receiver frequency error by the frequency adjustment commands to the uplink and downlink phase rotators or to the VCXO digital-to-analog converter (VCXO DAC) by feedback control principals based on measured receiver frequency error. During frequency track mode when communications between local and remote units are possible, the AFC only adjusts radio frequency via phase rotator commands and the VCXO command remains fixed, thereby avoiding communications performance degradation by VCXO frequency quantization error due to the VCXO DAC. The AFC adjusts VCXO frequency only during a preliminary acquisition mode prior to data communications, or to back out excessively large frequency offsets accumulated in the downlink and uplink phase rotators during track mode. When a VCXO adjustment is made in track mode, phase rotator adjustments are simultaneously applied to cancel the errors in transmitter and receiver radio frequencies caused by the step change due to VCXO frequency quantization thereby mitigating VCXO frequency quantization noise.
Owner:AVAGO TECH WIRELESS IP SINGAPORE PTE

Special photoelectric nacelle of power patrol unmanned helicopter

The invention discloses a special photoelectric nacelle of a power patrol unmanned helicopter, which comprises an airborne part and a ground part, wherein the airborne part comprises a fixed part which is positioned in the upper part, a rotatable part which is positioned in the lower part and a servo control assembly; the rotatable part comprises a gyroscope stable rotating tower; the fixed part comprises an electronic control cabin; cables between the electronic control cabin and the gyroscope stable rotating tower are connected by a conducting slide ring which can support the gyroscope stable rotating tower to rotate by nx360 degrees; and the airborne part of the photoelectric nacelle is suspended on the helicopter by a vibration reducing device and communicated with a flight control system of the helicopter. The special photoelectric nacelle is a photoelectric task load with compact structure and high performance, can meet the requirement for remote power patrol, has self-stabilizing function and self-tracing function, can shoot a target to be traced from an image in real time, transmit the target to a ground control vehicle by a radio transmission system on an aerial carrier and is convenient for a patrol parson to directly master the scene condition to improve the efficiency of power patrol.
Owner:STATE GRID CORP OF CHINA +3

Optical fiber radio transmission system, transmission device, and reception device

An optical fiber radio transmission system is provided which is capable of considerably improving the received dynamic range of radio signals and, in addition, is capable of optically transmitting radio signals while preventing the deterioration of transmission performance and the loss of linearity of an input signal more easily. A received level detection section 111 detects which one of predetermined levels, i.e., Level I, Level II, and Level III, the received level of a radio signal received by an antenna 400 falls under. A signal control section 112 performs an amplification/attenuation process on the radio signal in accordance with the detected level. A control information sending section 113 superimposes control information indicating the detected level on a primary signal obtained after the amplification/attenuation process. This signal is converted to an optical signal and transmitted. An optical to electrical conversion section 211 converts the optical signal received from a transmitting unit to an electrical signal. A control information extraction section 212 extracts the level from the control information, which has been superimposed on the primary signal. A signal control section 213 performs an amplification/attenuation process on the primary signal in accordance with the extracted level.
Owner:HASE KAZUTOSHI +2

Geographic information storage, transmission and display system

A system is disclosed in which a geographic area of interest can be selected, and information corresponding to the selected area can be downloaded and displayed by a user in an efficient and timely manner. The geographic area of interest may initially be selected by various input means such as a map, longitude/latitude coordinates, a global positioning system (GPS), and the like. Once the particular geographic area has been selected, geographic information corresponding to the selected area is downloaded to the user. The geographic information may include photographic images, radar, radio transmission, cell phone transmission, time sequenced images, ground moving target information, air moving target information, maritime moving target information, red or blue force identification and/or potential hazard areas information. The geographic information may be stored in a suitable data storage system such as a server. Alternatively, the geographic information may be generated real time and downloaded to the user. In one embodiment, the geographic information includes photographic images and a relatively low resolution image of a large geographic area is initially displayed to the user. The user can then select a limited region of the photographic image for closer viewing. The limited region of the photographic image may then be downloaded to the user in a higher resolution format, thereby reducing the amount of high resolution data that must be transmitted to the user. Various display devices may be used, such as personal data assistants (PDAs), laptop computers, desktop computers, vehicle-mounted computers, tablets, cell phones and the like. The display device may also be used as the input device to both select the geographic area of interest and display the photographic images or other geographic information of the selected area.
Owner:NORTHROP GRUMMAN SYST CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products