Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

863results about "Seismic signal transmission" patented technology

Method and apparatus for internetworked wireless integrated network sensor (WINS) nodes

The Wireless Integrated Network Sensor Next Generation (WINS NG) nodes provide distributed network and Internet access to sensors, controls, and processors that are deeply embedded in equipment, facilities, and the environment. The WINS NG network is a new monitoring and control capability for applications in transportation, manufacturing, health care, environmental monitoring, and safety and security. The WINS NG nodes combine microsensor technology, low power distributed signal processing, low power computation, and low power, low cost wireless and / or wired networking capability in a compact system. The WINS NG networks provide sensing, local control, remote reconfigurability, and embedded intelligent systems in structures, materials, and environments.
Owner:INTELLECTUAL VENTURES I LLC

Electrical power distribution and communication system for an underwater cable

An underwater cable arrangement includes systems and method for distributing and / or transferring power and / or data to internal devices and external devices disposed along an underwater cable. Under water coupling systems and underwater electrical devices may be used in the distribution and / or transfer of the power and / or data.
Owner:INPUT OUTPUT INC

Devices for controlling the position of an underwater cable

A device for controlling the position of an underwater cable comprises a body, first and second actuators, and a pair of wings. The body is stationarily mountable to the underwater cable and the first and second actuators are disposed in the body. Each wing has an axis of rotation and the wings are coupled to the first and second actuators to control the depth and the horizontal position of the underwater cable in the water.
Owner:INPUT OUTPUT INC

Apparatus, systems and methods for seabed data acquisition

Seabed sensor units, systems including same, and methods for acquiring seabed data are described, one seabed sensor unit comprising a base, the base containing at least one sensor able to detect a seismic signal, electronics comprising a clock and one or more electronic components enabling the sensor to communicate seismic data to one or more memory modules, and a local autonomous power source. This abstract is provided to comply with the rules requiring an abstract, which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. 37 CFR 1.72(b).
Owner:WESTERNGECO LLC

Method and system for transmitting seismic data to a remote collection station

The invention pertains to transmission to a remote station, by means of transmission channels (generally radio transmission channels), of seismic data acquired by a data collection equipment comprising a plurality of acquisition units, each being suited to acquire, to store and preferably to compress the data to be transmitted. The invention comprises ordered storage, in a high-capacity memory (flash type memory for example) of each acquisition unit (Ai), of data obtained during successive emission-reception cycles (acquired and possibly preprocessed seismic data) so as to form a stream of stored data to be transmitted, and progressive transfer of the stored data stream from each acquisition unit to the remote station by means of the transmission channel, by reading each storage memory, with a time lag in relation to the time of their storage depending on the transmission rate of each transmission channel and on the transmission mode selected with preferably, if sending of the data of a cycle is delayed, sending of at least partial data, compressed or not, for quality control purposes. The data transmitted are reconstituted at the remote station. The method can be used for large-scale seismic data transmission.
Owner:INST FR DU PETROLE

Wireless sensor, rolling bearing with sensor, management apparatus and monitoring system

The wireless sensor adds identification information peculiar to respective sensor modules to detection data of vibration, temperature, and so on, detected by the sensor modules respectively. The wireless sensor transmits the detection data with the identification information as a signal through a communication unit by radio waves. On the other hand, the management apparatus receiving the signal classifies and files the detection data on the basis of the identification information included in the signal. Then, the monitoring system is designed to make the management apparatus manage a plurality of wireless sensors attached to movable shafts of processing machines or the like.
Owner:NSK LTD

Inductively coupled data and power transfer system and apparatus

The present invention provides a system and apparatus for transferring electronic data and / or power from one station to another by means of a transportable pod comprising a solid state memory device and further provided with an inductively linked, electrically insulated connector. The transportable pod comprises a battery which is used to power a remote host docking station, which may be used in an underwater environment for the collection of subsea data. The transportable pod can be transferred alternately from a home docking station, where it is charged up, and where it's stored data is uploaded and to a remote host docking station where is provides power, and where it collects and stores data collected by the remote host docking station.
Owner:WFS TECH

Seismic data acquisition system using acquisition stations set on the sea bottom

The invention is a system designed for acquisition of seismic data by means of acquisition stations set on water bottom of a water body. The system comprises acquisition stations (DSAU) combining a streamlined boom suited to penetrate the bottom and thus couple seismic receivers with the underlying formation, a sealed body for electronic data acquisition and communication modules. These acquisition stations (DSAU) are placed in the water and drop to the bottom under the effect of gravity. Relay buoys (RCB) are positioned at the surface, each with a GPS positioning module, a radio link with a central station (CCRU), on a ship for example, and modules providing acoustic communication with bottom acquisition stations (DSAU), which are used to determine the position of the stations in relation to the relay buoys and to exchange control data and seismic data (good running order data or possibly seismic traces acquired if the conditions lend themselves thereto) to provide seismic prospecting or monitoring of an underground formation.
Owner:INST FR DU PETROLE

Seismic prospecting method and device using simultaneous emission of seismic signals obtained by coding a signal by pseudo-random sequences

Seismic prospecting method and device using simultaneous emission of seismic signals obtained by coding a signal by pseudo-random sequences, and notably a periodic signal phase modulated by such sequences.Signals such as, for example, periodic signals phase modulated according to a pseudo-random code (binary for example), produced by a control unit, are for example emitted in the ground by means of vibrators, the seismic signals reflected by the subsoil discontinuities in response to the periodic signals emitted are picked up by receivers coupled with the formation and recorded in an acquisition and recording system. The periodic signals are emitted simultaneously by the vibrators. The control sequences of the coded periodic signals intended for all the vibrators are obtained either from the same random binary sequence with respective time lags evenly distributed over the length of the control sequence according to the number of vibrators used simultaneously (first mode), or from different sequences selected from among a group of sequences of minimum crosscorrelation (second mode), or by combining the two aforementioned modes. The respective contributions of the various vibrators are separated by correlating the signals received and recorded with signals constructed from the various control sequences obtained with time lags. The vibrators can be divided into several groups, the vibrators of each group being controlled by a binary sequence belonging to a minimum crosscorrelating group.Application: seismic prospecting or seismic monitoring of reservoirs for example.
Owner:INST FR DU PETROLE

Synchronization and positioning of seismic data acquisition systems

A network distributed seismic data acquisition system comprises seismic receivers, connected to remote acquisition modules, receiver lines, line tap units, base lines, central recording system and a seismic source event generation unit. Global positioning system receivers of full or partial capability are combined with some of these modules and units and a master global positioning receiver aids the distributed receivers. The global positioning receivers may be used to synchronize high precision clocks as well as to provide positioning information. A master clock is designated and one or more high precision clocks is added to the network to correct for timing uncertainty associated with propagation of commands through the network. Seismic receivers and seismic sources are thereby synchronized with greater accuracy than otherwise possible, thus enabling an improvement in subsurface geologic imaging.
Owner:GEO X SYST

Distributed acoustic sensing with fiber bragg gratings

A method for obtaining information about a subsurface formation from acoustic signals that contain information about to the subsurface formation, comprises: providing a fiber optic having a proximal end and a remote end, with the proximal end being coupled to a light source and a proximal photodetector, wherein said fiber optic cable includes randomly spaced impurities and selectively placed Bragg gratings and wherein the fiber optic cable is acoustically coupled to the subsurface formation so as to allow the acoustic signals to affect the physical status of at least one grating: transmitting at least one light pulse into the cable; receiving at the photodetector a first light signal indicative of the physical status of at least one first section of the cable, and outputting at least one item of information to a display.
Owner:SHELL USA INC

Systems and Methods for Seismic Data Acquisition Employing Asynchronous, Decoupled Data Sampling and Transmission

InactiveUS20080219094A1Eliminate costlyEliminate inflexibleSeismic signal transmissionSeismic signal processingData acquisitionSubject matter
Systems and methods for asynchronously acquiring seismic data are described, one system comprising one or more seismic sources, a plurality of sensor modules each comprising a seismic sensor, an A / D converter for generating digitized seismic data, a digital signal processor (DSP), and a sensor module clock; a seismic data recording station; and a seismic data transmission sub-system comprising a high precision clock, the sub-system allowing transmission of at least some of the digitized seismic data to the recording station, wherein each sensor module is configured to periodically receive from the sub-system an amount of the drift of its clock relative to the high precision clock. This abstract is provided to comply with rules requiring an abstract to ascertain the subject matter of the disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
Owner:WESTERNGECO LLC

Method and system for determining parameters inside a subterranean formation using data sensors and a wireless ad hoc network

The present invention is directed to a method and system for determining parameters inside a subterranean formation. In accordance with the present invention, a plurality of wireless data sensors are injected into the pores or fractures of a subterranean formation. The data sensors includes sensors that record parameters such as temperature, pressure and certain time stamps. Either autonoumously or upon command from a data interrogator tool located down hole, the plurality of data sensors form a wireless ad hoc network and telemeter the recorded data back to the data interrogator tool, which in turn communicates the data to a microprocessor located at the surface. Based on these data, the spatial distribution of the sensors and formation parameters such as temperature and pressure at each data sensor inside the subterranean formation can be obtained.
Owner:HALLIBURTON ENERGY SERVICES INC

Method and system for transmission of seismic data

The transmission method utilizes multiple seismic acquisition units within an array as intermediate short range radio receivers / transmitters to pass collected seismic data in relay fashion back to a control station. Any one seismic unit in the array is capable of transmitting radio signals to several other seismic units positioned within radio range of the transmitting unit, thus allowing the system to select an optimal transmission path. Utilizing an array of seismic units permits transmission routes back to a control station to be varied as needed. In transmissions from the most remote seismic unit to the control station, each unit within a string receives seismic data from other units and transmits the received seismic data along with the receiving unit's locally stored seismic data. Preferably, as a transmission is passed along a chain, it is bounced between seismic units so as to be relayed by each unit in the array.
Owner:MAGSEIS FF LLC

Underwater cable arrangement and coil support arrangement for an underwater cable

PCT No. PCT / US96 / 15478 Sec. 371 Date Mar. 20, 1998 Sec. 102(e) Date Mar. 20, 1998 PCT Filed Sep. 20, 1996 PCT Pub. No. WO97 / 11395 PCT Pub. Date Mar. 27, 1997An underwater cable arrangement comprises an underwater cable capable of being towed through the water, an external device for mounting on the exterior of the cable, and a coil support device disposed inside the cable for supporting a coil. In some embodiments, the coil support device and the external device have engaging portions which co-act with each other to prevent relative rotation of the coil support device and the external device about the longitudinal axis of the cable. In some embodiments, the underwater cable has a skin and the external device is positioned around the coil support device with the skin of the underwater cable between them. The coil support device and the external device have an interference fit with respect to each other to resist relative movement to the coil support device and the external device in the longitudinal direction of the cable. In some embodiments, the external device and the coil support device are fitted to each other so as to maintain a constant angle between a longitudinal axis of the cable and a longitudinal axis of the external device.
Owner:DIGICOURSE

Synchronization of seismic data acquisition systems

A network distributed seismic data acquisition system comprises seismic receivers connected to remote acquisition modules, receiver lines, line tap units, base lines, a central recording system and a seismic source event generation unit synchronized to a master clock. One or more high precision clocks is added to the network to correct for timing uncertainty associated with propagation of commands through the network. Seismic receivers and seismic sources are thereby synchronized with greater accuracy than otherwise possible. Timing errors that interfere with the processing of the seismic recordings are greatly reduced, thus enabling an improvement in subsurface geologic imaging.
Owner:INOVA SYST CORP

Seismic telemetry system

A system for remotely controlling, acquiring and monitoring the acquisition of seismic data. The system includes remote equipment for collecting seismic data and for transmitting and receiving communication signals to and from a remote location. The system also includes local equipment for transmitting and receiving communication signals to and from the remote location. In this manner, the collection of seismic data at remote locations can be controlled and monitored locally.
Owner:INOVA

Seismic streamer array

Seismic sensor systems and sensor station topologies, as well as corresponding cable and sensor station components, manufacturing and deployment techniques are provided. For some embodiments, networks of optical ocean bottom seismic (OBS) stations are provided, in which sensor stations are efficiently deployed in a modular fashion as series of array cable modules deployed along a multi-fiber cable.
Owner:OPTOPLAN

Wireless sensor, rolling bearing with sensor, management apparatus and monitoring system

The wireless sensor adds identification information peculiar to respective sensor modules to detection data of vibration, temperature, and soon, detected by the sensor modules respectively. The wireless sensor transmits the detection data with the identification information as a signal through a communication unit by radio waves. On the other hand, the management apparatus receiving the signal classifies and files the detection data on the basis of the identification information included in the signal. Then, the monitoring system is designed to make the management apparatus manage a plurality of wireless sensors attached to movable shafts of processing machines or the like.
Owner:NSK LTD

Data compression methods and systems

The present invention is directed to methods and systems for taking measurements relating to subterranean formations. The methods and systems effectively compress data and thus facilitate more efficient data transmission. The methods and systems are capable of automatically varying data compression rates during a measurement operation. The variable data compression capability facilitates reliable collection of measurement data at faster and / or constant logging speeds. The data compression methods and systems may be applied to any measurement operation relating to subterranean formations, including, but not limited to: acoustic wireline logging measurements, acoustic logging-while-drilling measurements, electromagnetic measurements, nuclear magnetic resonance measurements, and resistivity measurements.
Owner:SCHLUMBERGER TECH CORP

Mine mining fracture evolution and distribution monitoring device and method

ActiveCN102298154AMonitor evolution in real timeReal-time monitoring distributionNon-electrical signal transmission systemsSeismic signal transmissionData acquisitionAnalysis center
The invention discloses a device and method for monitoring the evolution and distribution of a mining-induced fracture. Generation, evolution and distribution of the mining-induced fracture are monitored through a method of monitoring acoustic wave or vibration generated in fracture of coal or rock. The device mainly comprises an anti-explosion acoustic wave monitor, an anti-explosion power source and a ground monitoring analysis center, wherein the anti-explosion acoustic wave monitor consists of a sonic sensor and a signal conversion and data acquisition instrument; the sonic sensor is arranged on a roadway base plate, an anchor rod tail end or a drill hole; and an acoustic wave or vibration signal monitored by the sonic sensor is collected and processed by the signal conversion and data collection instrument, and is transmitted to the ground monitoring analysis center through an optical fiber port to be subjected to processing, positioning and quantitative analyzing and be labeled on a plane, a cross section or a space diagram according to the position and size, so as to show the position and size of the fracture. The device and method provided by the invention has the beneficial effects of large monitoring range, a large amount of comprehensive monitoring information, high automation degree, strong instantaneity and capability of being applied to monitoring and forecastingthe coal rock dynamic disasters, such as rock burst, and outburst and water burst of coal and gas and the like.
Owner:XUZHOU FUAN TECH

Sensor synchronization using embedded atomic clocks

A data acquisition system includes multiple terminal nodes. Each terminal node includes a sensor, an atomic clock and a controller. Each sensor is adapted to sense an external event and transform the external event into an electrical signal. Each atomic clock generates a time reference. Each controller is coupled to the atomic clock and the sensor, and is configured to merge the electrical signal with the time reference and provide a time-stamped data stream to a remote central processor. The remote central processor is configured to organize a respective time-stamped data stream from one terminal node with another respective time-stamped data stream from another terminal node.
Owner:HARRIS CORP

Methods and apparatus for reducing electromagnetic signal noise

The present invention generally provides methods and apparatus for reducing noise in a detected electromagnetic wave used to telemeter data during a wellbore operation. In one embodiment, two surface antennae are placed on opposite sides of the wellbore and at the same distance from the wellbore. The signals from the two antennae are summed to reduce the noise in the electromagnetic signal transmitted from the electromagnetic downhole tool.
Owner:WEATHERFORD TECH HLDG LLC

Implementing a network infrastructure in a seismic acquisition system

A method and apparatus implementing a network infrastructure in a seismic acquisition system are disclosed. The apparatus is a seismic acquisition system, comprising a plurality of seismic data sources (120) capable of generating data; at least one data collection system (140) utilizing an open network protocol; and at least one line network (300) connecting the data sources to the data collection system and utilizing an open network protocol. The line network (300) includes a plurality of data source nodes (130) at which a portion of the plurality of seismic data sources are respectively attached to the line network; and a router (135) for routing data generated by the seismic data sources (120) to the data collection system (140) through the data source nodes (130) in accordance with the open network protocol. The method comprises assigning at least two respective network addresses to each one of a plurality of seismic data sources, a plurality of data source nodes, a plurality of routers, and a data collection system; routing data generated by the data sources through the data source nodes and the routers to the data collection system; correlating the network addresses of the seismic data sources to the physical location of the respective seismic data sources; and correlating the physical locations of the respective seismic data sources to the data generated by the respective seismic data sources.
Owner:WESTERNGECO LLC

System and method of a reservoir monitoring system

Reservoir monitoring system. At least some of the illustrative embodiments are methods comprising installing a hydrocarbon reservoir monitoring system in a marine environment. The installing may be by: placing a base unit at the sea floor, the base unit communicatively coupled to a computer system at the surface, the communicative coupling by way of an umbilical cable; mechanically coupling a first termination module to the base unit, the termination module coupled to a first sensor cable; and communicatively coupling the first sensor cable to the umbilical cable.
Owner:GEOSPACE TECH

Single station wireless seismic data acquisition method and apparatus

A seismic data acquisition apparatus having a recorder co-located with a sensor unit in a seismic spread and a communication device for direct communication with a central recorder. A memory located in the recorder and / or in the central controller holds location parameters associated with the sensor unit, and the parameters can be updated. Methods of seismic data acquisition including sensing seismic energy and recording the sensed energy at the sensor location. Delivering the recorded information to a central recorder by manually retrieving removable memory from each recorder, by wireless transmission of the information, or by removing the information from each recorder by inductive or cable connectors and a transfer device. It is emphasized that this abstract is provided to comply with the rules requiring an abstract which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
Owner:INOVA

Method and system for transmitting signals from a distributed acoustic sensor through a one pin solution of a subsea wellhead

A method and system for transmitting signals from a distributed acoustic sensor, DAS, into a well through at least one pin penetrator running from a downhole side to a top side of a subsea wellhead, and without degrading quality of the signals. The method includes: connecting a first assistant recording package, ARP, between the DAS and the at least one pin penetrator on a downhole side of the wellhead; connecting a second ARP between a data acquisition system and the at least one pin penetrator on the topside of the well head; converting DAS signals to electrical signals by the first ARP and performing signal conditioning; transmitting signals received from the DAS sensors, from the first ARP and through the wellhead to the second ARP. The system implements the method.
Owner:RIIDO

Method of accurately determining positions of deployed seismic geophones

A method is provided for accurately determining the physical location of a deployed seismic geophone used in seismic investigations by using a portable navigational satellite receiver to obtain a set of navigational satellite measurements providing the position of the deployed geophone at the time of deployment of the geophone into the earth. A method is provided for automatically and accurately identifying and determining the physical location of a deployed geophone used in seismic investigations by using one or more portable navigational satellite receivers and an automatic geophone identification and tracking system at the time of geophone deployment.
Owner:WESTERNGECO LLC

Data compression method for use in downhole applications

Borehole image data is compressed and transmitted to the surface one pixilated trace at a time. The compression methodology typically includes transform, quantization, and entropy encoding steps. The invention advantageously provides for sufficient data compression to enable conventional telemetry techniques (e.g., mud pulse telemetry) to be utilized for transmitting borehole images to the surface. By compressing and transmitting sensor data trace by trace the invention also tends to significantly reduce latency.
Owner:SCHLUMBERGER TECH CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products