Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2919results about "Seismic signal receivers" patented technology

Method and apparatus for deployment of ocean bottom seismometers

ActiveUS20060159524A1Effective movementEasy to deploySeismic signal receiversBuoysOcean bottom seismometerOrbit
A method and apparatus for deployment and retrieval of ocean bottom seismic receivers. In one embodiment, the apparatus comprises a carrier containing a plurality of receivers attached to a remotely operated vehicle (ROV). The carrier comprises a frame in which is mounted a structure for seating and releasing said receivers. The structure may comprise a movable carousel or a movable conveyor or fixed parallel rails or a barrel. In the case of the barrel, the receivers are axially stacked therein. The structure is disposed to deliver said receivers to a discharge port on said frame, where the receivers are removable from said carrier. The apparatus includes a discharge mechanism for removing said receivers from said carrier. In another embodiment, the method comprises the steps of loading a carrier with a plurality of receivers, attaching said carrier to an ROV, utilizing said ROV to transport the carrier from a surface vessel to a position adjacent the seabed and thereafter utilizing said ROV to remove receivers from said carrier and place the receivers on the seabed. In yet another embodiment, an ROV adjacent the seabed engages a deployment line extending from the vessel. The deployment line is used to guide receivers attached thereto down to the ROV for “on-time” delivery and placement on the seabed.
Owner:MAGSEIS FF LLC

Near wellbore modeling method and apparatus

A “near wellbore modeling” software will, when executed by a processor of a computer, model a localized area of a reservoir field which surrounds and is located near a specific wellbore in the reservoir field by performing the following functions: (1) receive input data representative of a reservoir field containing a plurality of wellbores, (2) establish a boundary around one specific wellbore in the reservoir field which will be individually modeled and simulated, (3) impose an “fine scale” unstructured grid inside the boundary consisting of a plurality of tetrahedrally shaped grid cells and further impose a fine scale structured grid about the perforated sections of the specific wellbore, (4) determine a plurality of fluxes / pressure values at the boundary, the fluxes / pressure values representing characteristics of the reservoir field located outside the boundary, (5) establish one or more properties for each tetrahedral cell of the unstructured grid and each cylindrical grid cell of the structured grid, (6) run a simulation, using the fluxes / pressure values at the boundary to mimic the reservoir field outside the boundary and using the fine scale grid inside the boundary, to thereby determine a plurality of simulation results corresponding, respectively, to the plurality of grid cells located inside the boundary, the plurality of simulation results being representative of a set of characteristics of the reservoir field located inside the boundary, (7) display the plurality of simulation results which characterize the reservoir field located inside the boundary, and (8) reintegrate by coarsening the grid inside the boundary, imposing a structured grid outside the boundary, and re-running a simulation of the entire reservoir field.
Owner:SCHLUMBERGER TECH CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products